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ABSTRACT 

A common clinical observation of persons with Down syndrome at all 

developmental stages is hypotonia and generalized muscle weakness. The cause of 

muscle weakness in Down syndrome is not known and there is an immediate need to 

establish an acceptable animal model to explore the muscle dysfunction that is widely 

reported in the human population. Using a combination of functional, histological, and 

biochemical analyses this dissertation provides the initial characterization of skeletal 

muscle from the Ts65Dn mouse, a model of Down syndrome. 

The experiments revealed that Ts65Dn muscle over-expresses SOD1 protein but 

this did not lead to oxidative stress. Ts65Dn soleus muscles displayed normal force 

generation in the unfatigued state, but exhibited muscle weakness following fatiguing 

contractions. We show that a reduction in cytochrome c oxidase expression may 

contribute to the impaired muscle performance in Ts65Dn soleus. These findings support 

the use of the Ts65Dn mouse model of Down syndrome to delineate mechanisms of 

muscle dysfunction in the human condition. 



www.manaraa.com

SKELETAL MUSCLE FUNCTION, MORPHOLOGY, AND BIOCHEMISTRY IN 

TS65DN MICE: A MODEL OF DOWN SYNDROME 

 

 

 

By 

Patrick M. Cowley 

B.A. Ithaca College, 2002 

M.S. Ithaca College, 2005 

 

 

 

DISSERTATION 

 

Submitted in partial fulfillment of the requirements of the 

 degree of Doctor of Philosophy in Exercise Science and Science Education  

in the Graduate School of Syracuse University 

 

December 2011 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

Copyright © Patrick M. Cowley 2011 

All Rights Reserved 



www.manaraa.com

iv 

ACKNOWLEDGMENTS 

I would like to acknowledge the support and guidance of my committee members: 

Dr. Keith DeRuisseau, Dr. Stefan Keslacy, Dr. John Tillotson, Dr. Jill Kanaley, and Dr. 

Bo Fernhall. I have learned a lot throughout this entire process, and much of that is due to 

their efforts. I would particularly like to thank Keith. He has been supportive throughout 

the entire process. I’ve gained a tremendous skill-set working in Keith’s lab, and most of 

it came directly through his instruction. His hands-on approach demonstrates his 

tremendous commitment to his students. Most of all he has taught me so much about the 

process of doing science; lessons for which I’m grateful. 

I would also like to thank our colloborators: Dr. Lara DeRuisseau for providing 

the animals for the second set of experiments, and Dr. Frank Middleton for performing 

the microarray experiment and providing direction for the analysis. 

I would also like to acknowledge friends and family members who supported and 

encouraged me along the way. Most of all I would like to thank my wife, Danielle. She is 

blessed with such a charming joy of life and positive attitude that no matter how 

overwhelmed, frustrated, and completely annoyed I was that I couldn’t get an assay to 

work for the nth time, she always assured me that it would indeed work.  

 

 

 

 

 

 



www.manaraa.com

v 

TABLE OF CONTENTS 

Chapter I. Introduction       1 

       

Chapter II. Review of the Current Literature     8 

 

Chapter III. Functional Characterization of Skeletal Muscle in   47 

Down syndrome mice 

 

Chapter IV. Bibiography       153 

 

Chapter V. Appendices       177 

 

Chapter VI. Biographical Data      179 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

vi 

LIST OF ILLUSTRATIVE MATERIALS 

Figures 

 

Chapter II  

 

1. Strength deficits in persons with Down syndrome    10 

 

2. Expression or activity levels of the major antioxidants    15 

from various tissues in persons with Down syndrome 

 

3. Effect of cellular redox status on isometric force production   24 

in skeletal muscle 

 

4.  The regions of human chromosome 21 represented in the   33 

mouse models of Down syndrome 

 

5. The experimental set-up to study skeletal muscle function in vitro 40 

 

Chapter III. 
 

6. Western blot of antioxidant enzymes     99 

 

7. Western blot for oxidative injury      100 

 

8. Oxidant production in fibers      101 

 

9. Hydrogen peroxide content       102 

 

10. Superoxide dismutase 1 immunofluorescence in fibers   103 

 

11. Correlation between oxidant production      104 

and superoxide dismutase 1  

 

12. Force-frequency relationship      106 

 

13. Fatigue and recovery response      107 

 

14. Myosin heavy chain isoform composition    108 

 

15. Soleus morphology        109 

 

16. Myonuclear domain       111 

  

17. Western blot of cytochrome c oxidase     112 

 



www.manaraa.com

vii 

18. Model of cellular susceptibility to oxidative stress   152 

 

Tables 

 

Chapter II 

 

1. Markers of oxidative stress in persons with Down syndrome  16 

 

2. Phenotypes present in persons with Down syndrome    34 

and Ts65Dn mice 

 

Chapter III 
 

3. Design of experiment       67 

4. Animal characteristics       97 

5. Soleus muscle characteristics      98 

6. Soleus contractile properties      105 

7. Fiber characteristics       110 

 

8. Expression of trisomic genes       113 

9. Differentially expressed genes       120 

10. Differentially expressed genes with no functional annotation  131 

 

11. Summary of conservative gene-by-gene analysis    136 

12. Terms identified from DAVID analysis     140 

 

13. Differentially expressed microRNAs     149 

14. Effected pathways by microRNA      150 

 

 

 

 

 

 

 

 

 



www.manaraa.com

viii 

LIST OF ABBREVIATONS 

ADL – Activities of Daily Living 

ADP - Adenosine diphosphate 

App – Amyloid precursor protein 

ATP - Adenosine-5'-triphosphate 

CAT – Catalase 

cDNA - Complementary DNA 

CL - Cluster 

COX2 – Cytochrome c oxidase subunit II 

CO2 – Carbon dioxide 

CSA – Cross-sectional Area 

Cu
+
 - Cuprous Copper 

DAPI - 4',6-diamidino-2-phenylindole 

DAVID - Database for Annotation, Visualization and Integrated Discovery 

DMEM - Dulbecco's Modified Eagle Medium 

DNA - Deoxyribonucleic Acid 

D-PBS - Dulbecco's Phosphate Buffer Solution 

DS – Down Syndrome 

ES – Enrichment Score 

FDR – False Discovery Rate 

FE – Fold Enrichment 

Fe
2+

 - Ferrous Iron 

FDB – Flexor Digitorum Brevis 



www.manaraa.com

ix 

GAPDH – Glyceraldehyde-3- phosphate dehydrogenase 

GO – Gene Ontology 

GPX1 – Glutathione peroxidase 1 

HEPES - 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

Hsa# – Human Chromosome # 

H
+
 - Hydrogen Ion 

H&E – Hematoxylin and Eosin Stain 

H2DCFHDA – 2,7-dichlorodihydrofluorescin diacetate 

H2O2 – Hydrogen Peroxide 

KEGG - Kyoto Encyclopedia of Genes and Genomes 

KATP – ATP-sensitive K
+
 Channel 

ID – Intellectual Disability 

L0 – Optimal Length 

Mmu# – Mouse Chromosome # 

miRNA – Micro RNA 

mRNA – Messenger RNA 

NO – Nitric Oxide 

NOS – Nitric Oxide Synthase 

O.C.T. – Optimal Cutting Temperature Compound 

ONOO
-
 – Peroxynitrite 

O2 – Molecular Oxygen 

O2
-
 – Superoxide Anion 

OH – Hydroxyl Radical 



www.manaraa.com

x 

PCR - Polymerase Chain Reaction 

PBS – Phosphate Buffer Solution 

Pi – Inorganic Phosphate 

P0 – Peak Tetanic Tension 

RNA - Ribonucleic Acid 

Rnf160 – Ring finger protein 160 

SAM – Significance Analysis of Microarrays 

SDS-PAGE - Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SEM – Standard Error of the Mean 

SOD1 – Superoxide dismutase 1 

SOD2 – Superoxide dismutase 2 

Ts65Dn - Ts(17
16

)65Dn mouse  

VO2 – Oxygen Consumption 

WT – Wild-Type 

4-HNE – 4-hydroxy-nonenal 



www.manaraa.com

1 

 

CHAPTER I. INTRODUCTION 

 John Landon Down published the first clinical description of Down syndrome 

(DS) in 1866 (1). One hundred years later, Jerome Lejeune discovered that the genetic 

basis of the syndrome was a third copy of human chromosome 21 (Hsa21) (2). Hsa21 

contains over 400 genes, and the altered expression of these genes results in the DS 

phenotype and associated abnormalities (3, 4). Eighty different clinical characteristics can 

be attributed to DS, and all individuals born with DS will experience medical problems 

that will require sustained medical or social care, which can include craniofacial 

abnormalities, intellectual disability (ID), dementia, hypotonia, low muscle strength, and 

congenital heart disease (5).    

 Most persons with DS exhibit some form of physical limitation during the 

performance of daily tasks, such as walking or rising from a chair (6-9). Persons with DS 

also have extremely limited physical work capacities (10, 11). Low muscle strength is a 

predominate factor that explains why persons with Down syndrome exhibit limited 

physical work capacity and impaired functional ability (12-20). Thus, the outlook for 

persons with DS is particularly dismal, as further decreases in muscle strength with age 

will further exacerbate these limitations; resulting in an increased need for medical and 

social support and services. 

The consequences of muscle weakness are potentially far more wide-reaching 

than just limiting physical function. For example, a reduction in physical function as a 

result of low muscle strength may lead to more sedentary behavior. In fact, adults with 

DS are far more sedentary than their non-disabled counterparts (21). Increased sedentary 

behavior could be partly responsible for a number of other conditions that are prevalent in 
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this population, such as obesity and low bone mineral density, with the later resulting in a 

predisposition for bone fractures (22, 23). The development of obesity can also contribute 

to impairment in mobility. For example, in the general population increased levels of 

obesity are associated with decreased function on tasks, such as walking and rising from 

a chair (24). Thus, the development of obesity in persons with Down syndrome could 

further impair their functional abilities. It’s no wonder then, that a lack of mobility is 

associated with mortality in this population (25, 26). 

 Low muscle strength also has considerable effects on these individuals’ social and 

economic self-sufficiency. For example, muscle strength and physical work capacity are 

related to vocational performance in this population (27, 28). As persons with DS are 

more likely to perform labor-intensive jobs, their ability to complete these tasks may 

become impaired with further losses in muscle strength that occur with aging. Thus, low 

muscle strength may have a significant effect on these individuals’ vocational 

opportunity and productivity. This is very discouraging considering employment is an 

integral part of community integration for persons with ID, and persons with ID removed 

from competitive employment positions show a decrease in adaptive skill functioning 

(29, 30). 

Thus, there is overwhelming evidence that persons with DS exhibit low levels of 

muscle strength, physical work capacity, and functional ability. These factors, 

particularly muscle strength, due to its relation to both functional work capacity and 

ability are important for independent living, vocational opportunity and productivity, 

economic self-sufficiency, and quality of life in this population. Thus, understanding 

factors why persons with Down syndrome have such low muscle strength is an important 
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area for research that has immense ramifications for these individuals’ social and medical 

care needs.   

 Since the cause of their muscle weakness is unknown, one potential contributing 

factor could be oxidative stress, which is thought to be a key factor in the development of 

DS-related pathologies (31, 32). Described as an imbalance in the production of oxidants 

and their removal by antioxidants, oxidative stress leads to a disruption in redox signaling 

and/or cellular damage (33, 34). Oxidants are produced continuously at low but 

measurable concentrations in skeletal muscle fibers, and are essential for normal muscle 

function (35-37). In fact, small to moderate changes in muscle cell redox status leading to 

a slightly oxidized state enhance isometric force generating capacity (38, 39). On the 

other hand, large and prolonged elevations in oxidant production contribute to impaired 

muscle function in a number of diseases, such as Myotonic and Duchenne muscular 

dystrophy, heart failure, cancer, and HIV/AIDS (40). It is currently unknown whether 

oxidative stress contributes to the development of skeletal muscle weakness in persons 

with DS.   

 The cause of oxidative stress in DS may be the result of triplication and altered 

expression of Hsa21 genes, which includes copper-zinc superoxide dismutase (SOD1). 

SOD1 is located in the cytosol and inter-membrane space of the mitochondria and 

functions to dismutate superoxide radicals into hydrogen peroxide and oxygen (41). The 

over-expression of SOD1 could lead to a disproportionate increase in the production of 

hydrogen peroxide above the level that can be neutralized by normal antioxidant 

defenses, specifically catalase (CAT) and glutathione peroxidase (GPX) (32). In fact, 

cultured neurons from persons with DS exhibit a 3.5-fold increase in the rates of oxidant 
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production, which is reduced by the administration of antioxidants to the culture (42). 

The over-production of oxidants can damage various cellular components, and indeed, 

markers of oxidative injury to proteins, lipids, and DNA are increased in non-muscle 

tissues from persons with DS (43-45). Therefore, we suspect that the over-expression of 

SOD1 may lead to oxidative stress and skeletal muscle dysfunction in persons with DS.  

Specific Aims and Hypotheses 

 Persons with DS exhibit severe muscle weakness and the underlying 

mechanism(s) are not known. To delineate such a mechanism(s), a readily available 

model must be established. In these experiments we utilized the Ts65Dn mouse to 

examine the effect of segmental trisomy on skeletal muscle function, morphology, and 

global gene expression patterns. Furthermore, we examined the effect of segmental 

trisomy on muscle oxidant production, oxidative injury, protein antioxidant expression, 

and oxidative capacity.  

Ts65Dn mice are segmental trisomic for mouse chromosome 16 (Mmu16), which 

is homologous to Hsa21 (46, 47). One hundred and thirty-two genes are trisomic in the 

Ts65Dn mouse, including SOD1 (47). Importantly, Ts65Dn mice display a number of 

similar phenotypes to persons with DS, including structural and cognitive alterations of 

the brain, craniofacial abnormalities, and congenital heart defects (48-50).  

Specific Aim #1 

 The first aim was to characterize the effect of segmental trisomy on skeletal 

muscle function. Ts65Dn mice exhibit reduced running and swimming speeds, and grip 

strength (51). Therefore, we hypothesized that soleus muscles from Ts65Dn mice will 
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exhibit decreased tetanic specific tension, increased fatigability, and will fail to recover 

from fatiguing contractile activity compared to wild-type (WT) colony control mice.  

Specific Aim #2 

 The second aim was to characterize the effect of segmental trisomy on skeletal 

muscle morphology and myosin heavy chain composition. The morphology and myosin 

heavy chain distribution of skeletal muscle from persons with DS have received little 

attention in the literature. Biopsies of tongue muscle from persons with DS undergoing 

partial glossectomy revealed no intramyofiber pathology or changes in cross-sectional 

area, but exhibited a greater percentage of type II muscle fibers (52). The increased 

number of type II muscles fibers must be interpreted with caution, as the comparison 

group in this study was comprised of post-mortem tissue samples from individuals who 

had died from various diseases known to effect muscle (e.g., cancer). Therefore, we 

hypothesized that soleus from Ts65Dn mice will not exhibit changes in cross-sectional 

area or distribution of myosin heavy chain isoforms compared to soleus from WT mice.  

Specific Aim #3 

 The third aim was to characterize the effect of segmental trisomy on skeletal 

muscle gene expression. Transcriptional profiling of trisomic genes in Ts65Dn muscle 

has been performed previously, however no systematic investigation of global gene 

expression patterns have been reported (53). Global gene expression profiling of Ts65Dn 

brain tissues revealed the altered expression of many genes beyond those that were 

trisomic (54). Therefore, we hypothesized the gene expression analysis of soleus from 

Ts65Dn mice will reveal the alteration of numerous cellular pathways. 
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Specific Aim #4 

 The fourth aim was to characterize the effect of segmental trisomy on skeletal 

muscle oxidant production, oxidative injury, protein antioxidant levels, and oxidative 

capacity. SOD1 protein is over-expressed without a compensatory increase in the other 

endogenous antioxidants in non-muscle tissues from persons with DS (55). Therefore, we 

hypothesized that protein levels of SOD1 but no other endogenous antioxidants will be 

elevated in Ts65Dn soleus compared to WT soleus. Cultured neurons from persons with 

DS and hematopoietic stem cells from Ts65Dn mice exhibit elevated oxidant production 

(42, 56). Therefore, we hypothesize that single adult skeletal muscle fibers isolated from 

the flexor digitorum brevis of Ts65Dn mice will exhibit increased production of oxidants 

compared to muscle fibers from WT mice. Markers of oxidative injury in non-muscle 

tissues from persons with DS and the Ts65Dn mouse are elevated compared to control 

samples (43-45, 57).Therefore, we hypothesized that the expression levels of 4-hydroxy-

nonenal (4-HNE) and protein carbonyls, which are markers of lipid peroxidation and 

protein oxidation will be higher in Ts65Dn soleus compared to WT soleus. Lower values 

of basal, whole-body oxygen uptake in Ts65Dn mice are an indication of impaired 

oxidative phosphorylation (58). Therefore, we hypothesized that cytochrome c oxidase 

expression, a marker of muscle oxidative capacity, will be lower in Ts65Dn soleus 

compared to WT soleus.  

Significance of Study 

Understanding the effect of segmental trisomy on skeletal muscle is a critical step 

to establish a model to explore the muscle dysfunction widely reported in persons with 
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DS. Future experiments designed to prevent skeletal muscle dysfunction in Ts65Dn mice 

may one day lead to therapies for the human population. 
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CHAPTER II. REVIEW OF THE CURRENT LITERATURE 

Preface 

 This literature review summarizes the research related to muscle weakness in 

persons with DS. Special attention is given to the impact of oxidative stress on skeletal 

muscle function, and the vital role SOD1 plays in skeletal muscle homoeostasis. 

Important background information about the proposed methodology is also reviewed.  

Muscle Weakness in Persons with Down syndrome 

 It is widely reported in the literature that young and old persons with DS exhibit 

severe reductions in muscle strength. Figure 1 summarizes the findings of 9 different 

studies comparing voluntary strength output between persons with DS and persons with 

ID but without DS, and persons without ID and DS. The figure clearly shows that people 

with DS are significantly weaker than comparison groups. For example, persons with DS 

produce 40% less force with their knee extensors compared to persons with ID but 

without DS, and this difference increases up to 70% when compared to persons without 

ID and DS. Such diminished muscle strength is hard to fathom when considered in light 

of the fact that it is comparable to the difference seen between healthy persons in their 

20s and adults in their 70s (59, 60). It is clear that persons with DS represent a unique 

population that exhibit severely diminished muscle strength across the lifespan.  

 Sufficient levels of muscle strength are necessary to perform activities of daily 

living (ADL), such as rising from a chair and walking (13). It was recently shown by 

Cowley and colleagues, that muscle strength predicts the ability of young adults with DS 

to perform ADL (6). These findings are particularly compelling because such 

associations are typically found in older (> 65 years) but not young adults, suggesting 



www.manaraa.com

9 

 

these individuals are significantly affected by muscle weakness at a surprisingly young 

age. Thus, muscle weakness may have severe functional consequences for this 

population, and clearly affects many different areas of daily function (7, 14, 61). Thus, 

there is a clear need to understand why persons with DS have such diminished muscle 

strength.  
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Figure 1. This figure summarizes findings from 9 different studies comparing voluntary 

strength output between persons with DS and persons with ID but without DS (Bottom), 

and persons without ID and DS (Top). Each bar represents a study that analyzed muscle 

strength of a specific muscle group using an isokinetic dynamometer. The participants in 

these studies included young children to the elderly, and both sexes. The percent 

difference between groups was calculated using the normalized force values (force per 

body weight); in this calculation the non-DS group was used as the reference group, and 

if the value for persons with DS was lower it was expressed as a negative value (i.e., 

indicating lower strength). References for this figure include (12, 13, 15-20, 62) 
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Oxidative Stress in Persons with Down syndrome 

Introduction to Redox Biology 

 Redox biology is the process in which one ion or compound is reduced while 

another is oxidized. Molecular oxygen (O2) serves as the primary reactant in the 

production of highly reactive and potentially damaging molecules. These molecules, 

called reactive oxygen and nitrogen species (herein referred to as oxidants), disrupt 

normal cell function when in excess, damaging proteins, lipids, and DNA (41). However, 

oxidants also serve as signaling molecules that are essential for normal cell function (63).  

Superoxide radical (O2
-
) is the parent molecule in the oxidant cascade, and is 

generated by a single electron reduction of molecular oxygen (Reaction 1). 

  O2 + e
-
  O2

-
       Reaction 1 

O2
-
 is highly reactive and initiates the formation of other oxidants. O2

- 
is produced in 

skeletal muscle cells by complex I and III of the electron transport chain in the 

mitochondria, phospholipase A2, xanthine oxidases, and NAD(P)H oxidases (41). O2
-
 

can be converted into hydrogen peroxide (H2O2) non-enzymatically, and enzymatically 

by three different isoforms of superoxide dismutase (Reaction 2) (41).  

 O2
-
 + O2

-
 + 2H

+
  H2O2 + O2     Reaction 2 

 SOD1, superoxide dismutase 2 (SOD2), and extracellular superoxide dismutase are 

located in the cytosol and mitochondria, mitochondria, and extracellular space, 

respectively (41). H2O2 can be converted to H2O by GPX or CAT (Reaction 3 and 4, 

respectively) (41). 

 2 reduced glutathione (GSH) + H2O2  oxidized glutathione (GSSG) + 2 H2O 

          Reaction 3 
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 2 H2O2  2 H2O + 2 O2      Reaction 4 

The last biologically important oxidant is hydroxyl radical (OH), which is formed via 

the reaction of H2O2 with transition metals, such as ferrous (Fe
2+

) and cuprous (Cu
+
) ions 

through Fenton and Haber-Weiss reaction chemistry, respectively (Reaction 5 and 6) 

(41). 

 Fe
2+

 + H2O2  Fe
3+

 + OH + OH
-
     Reaction 5 

 Cu
+
 + H2O2  Cu

2+
 + OH + OH

-
     Reaction 6 

O2
-
 can also react with nitric oxide (NO) to form the nitrogen-based oxidant, 

peroxynitrite (ONOO
-
) (Reaction 7) (64).  

 O2
-
 + NO  ONOO

-
       Reaction 7 

Interestingly, this reaction is nearly three times more efficient than the ability of SOD to 

scavenge O2
-
; thus, O2

-
 will react preferentially with NO when both molecules are 

present (64). NO is produced from the reaction of L-arginine with O2 to form NO and 

citrulline via three different isoforms of nitric oxide synthase (NOS) (65). Neuronal-type 

NOS and endothelial-type NOS are associated with the plasma and mitochondrial 

membranes, respectively (65). Inducible-type NOS expression is stimulated by 

inflammation (65). Oxidants can also be scavenged by non-enzymatic antioxidants, 

which includes, but are not limited to: Vitamin E, carotenoids, bilirubin, vitamin C, and 

uric acid (41).  

Collectively, the production of oxidants and their removal by enzymatic and non-

enzymatic antioxidants determine cellular redox status. An imbalance in cellular redox 

status, caused by the accumulation of oxidants due to increased production and/or 

deficiency in antioxidant defenses causes a shift in redox status to an oxidized state, 
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which is termed oxidative stress. Oxidative stress has been described as an imbalance in 

the production of oxidants and their removal by antioxidants in favor of the former, that 

can cause a disruption of redox signaling and/or cellular damage (33, 34, 41). 

Alternatively, reductive stress occurs due to decreased oxidant production and/or 

increased activities or quantities of antioxidants. 

Powers and Jackson outlined 4 ways that oxidative stress can be monitored in 

biological systems (41). The first is the measurement of oxidants, which can be increased 

during periods of oxidative stress. The second is the measurement of non-enzymatic 

antioxidants (Vitamin C and E) and glutathione, which can decrease during periods of 

oxidative stress. The third is the measurement of oxidized molecules, like proteins, lipids, 

and DNA. Oxidized molecules can increase during periods of oxidative stress. The last is 

the measurement of cellular redox status, which can be assessed by measuring the ratio of 

GSH to GSSG. Periods of oxidative stress can cause a reduced GSH to GSSG ratio. 

Redox Status in Persons with Down syndrome 

 Oxidative stress is thought to be a key factor in the development of DS-related 

pathologies, and may be the result of triplication and altered expression of chromosome 

21 genes. One gene located on chromosome 21 that may play a prominent role in the 

development of oxidative stress is SOD1 (31, 32).The over-expression of SOD1 could 

lead to a disproportionate increase in the production of H2O2 above the level that can be 

neutralized by normal antioxidant defenses (i.e., GPX and CAT) (32).  

 Figure 2 summarizes the findings from 11 different studies that have examined 

the expression/activity of SOD1, GPX, and CAT in a variety of tissues from persons with 

DS and control participants. The figure clearly shows that the expression/activity of 
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SOD1 in non-muscle tissues from persons with DS is higher compared to control 

participants by 1.40-fold. The figure also shows there is not an equivalent increase in 

SOD2 (1.04-fold), CAT (1.10-fold), and GPX (1.18) in DS tissues. These findings 

suggest that the basal level of oxidant production may be altered in persons with DS. In 

fact, cultured neurons isolated from brain tissue of persons with DS exhibit a 3.5-fold 

higher level of oxidant production compared to control neurons (42). In addition, the 

viability of cultured DS neurons was prolonged by adding a variety of antioxidants (e.g., 

vitamin E, N-acetyl-L-cysteine, and catalase) to the cell culture media, suggesting 

oxidative stress played a casual role in neuronal death (42). 

  Exposure of cells and tissues to elevated and prolonged levels of oxidants can 

lead to cell damage and altered redox status (66, 67). Table 1 summarizes the evidence 

showing that markers of oxidative stress are increased in persons with DS compared to 

control participants. Collectively, these findings suggest non-muscle tissues from persons 

with DS exhibit oxidative stress
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Figure 2. This figure summarizes the findings from 11 different studies examining the expression or activity levels of the major 

antioxidants in a variety of cells and tissues from persons with DS and control participants. Each bar represents the expression or 

activity level of a particular antioxidant expressed relative to the DS value. A value of 1 indicates the groups had similar 

expression/activity values. Values greater than 1 indicate the DS group was higher. The horizontal arrows show the overall mean 

value. References for this figure include (68-75, 76{Ordonez, 2006 #881, 77, 78)}. Please note this figure is not inclusive, and 

contains only representative publications from the literature.  
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Table 1. Markers of oxidative stress in persons with DS compared to control participants. 

 

Tissue/Cell type Marker of Oxidative Stress Effect Reference 

Brain Oxidant Production  (42) 

 DNA Oxidation  (79) 

 Lipid Oxidation  (42) 

 Lipid Oxidation  (44) 

 Protein Nitration  (79) 

 Protein Oxidation  (44) 

Plasma Reduced/Oxidized Glutathione Ratio  (80) 

 Lipid Oxidation  (81) 

 Lipid Oxidation  (82) 

 Lipid Oxidation  (45) 

 Protein Oxidation  (45) 

Erythrocyte Lipid Oxidation  (83) 

Urine DNA Oxidation  (43) 

 Lipid Oxidation  (43) 
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 Lipid Oxidation  (84) 

Serum Oxidant Production  (85) 

 Lipid Oxidation  (73) 

Leukocyte DNA Oxidation  (86) 

Lymphocytes DNA Oxidation  (87) 

 = Increased in DS;  = Decreased in DS;  = No difference 
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Physiological Mechanisms of Skeletal Muscle Contraction 

 Our current experimental set-up (i.e., in vitro skeletal muscle contractile function) 

excludes us from examining events prior to the process of excitation-contraction coupling. Thus, 

a review of this process is provided [outlined in (88, 89)].  

 The action potential generated on the muscle fiber membrane travels down the t-tubules, 

which are deep invaginations in the membrane and are in close proximity to the sarcoplasmic 

reticulum. Ca
2+

 is released from the sarcoplasmic reticulum via the interaction of the 

dihydropyridine and ryanodine receptors. The ryanodine receptor acts as a plug and prevents 

Ca
2+

 release from the sarcoplasmic reticulum. The dihydropyridine receptors respond to the 

action potential by removing the plug, allowing an efflux of Ca
2+

 from the sarcoplasmic 

reticulum. Ca
2+

 allows the contractile proteins to interact.  

 The skeletal muscle fiber is composed of myofibrils that are subsequently composed of 

sarcomeres, which are the functional unit of skeletal muscle. The sarcomere is composed of thick 

and thin filaments that overlap; they represent the contractile proteins, which shorten during 

concentric muscle contractions. The thick filament is composed of a protein called myosin, 

whereas the thin filaments are composed of actin, and regulator proteins tropomyosin and 

troponin. Contractile force is produced by the cross bridges, which are formed from the 

interaction of myosin and actin. The structure of myosin includes a stem and a globular head that 

protrudes outward. The globular head of myosin contains an ATPase, which hydrolyzes ATP to 

yield chemical energy. At rest, the globular head of myosin is in a “cocked” position and bound 

to ADP; in this position the troponin-tropomyosin complex blocks myosin and actin from 

binding to each other. Ca
2+

 removes the inhibition of the troponin-tropomyosin complex by 
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binding to the C subunit of troponin, causing a conformational change that pulls tropomyosin off 

the active binding site.  

 When myosin and actin bind the myosin head flexes creating a longitudinal force sliding 

the filaments over one another, which shortens the sarcomere. At this point, myosin and actin 

detach when another ATP binds to myosin. This cycle continues if Ca
2+

 remains near the 

contractile proteins and there is available ATP. Ca
2+

 is returned to the sarcoplasmic reticulum 

mainly by calmodulin and the sarco-endoplasmic reticulum Ca
2+

 ATPase pump. Collectively, the 

efficiency of these processes determines force-generating potential. 

Redox Modulation of Skeletal Muscle Contractile Function 

 This section will describe the effects of oxidants on skeletal muscle contractile function. 

Oxidants are produced continuously at low but measurable concentrations in skeletal muscle 

fibers (35-37, 90). The production of oxidants is activity dependent, as repetitive skeletal muscle 

contractions increases oxidant production (35, 36, 91, 92). Therefore, in this discussion the 

contractile history of the muscle must be considered, and the effect of oxidants on unfatigued and 

fatigued muscle is discussed separately. Findings from studies examining the effects of oxidants 

on unfatigued and fatigued skeletal muscle will be summarized using Reid’s Model (38).  

Unfatigued Skeletal Muscle 

 It is now well established that cellular redox status modulates skeletal muscle contractile 

function. The first evidence of this came from work by Michael Reid and colleagues at the 

University of Kentucky. Their work showed that oxidants exhibit biphasic effects on isometric 

force production using unfatigued rat diaphragm fiber bundles. Specifically, brief incubation of 

diaphragm fiber bundles with H2O2 increases isometric force production, whereas treatment with 

SOD and CAT decreases isometric force production (39). 
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 Oxidants affect many components of the contractile process, and these effects are both 

time- and concentration-dependent. For example, incubation of mouse single skeletal muscle 

fibers with supra-physiological levels of H2O2 for short periods of time enhance isometric force 

production, and these changes do not effect intracellular Ca
2+

 transients (93). These findings 

indicate that high concentrations of oxidants over a short time period affect the sensitivity of the 

contractile proteins to Ca
2+

, but not Ca
2+

 regulation (e. g., sarcoplasmic reticulum function). 

However, prolonged exposure of muscle fibers to supra-physiological levels of H2O2 decrease 

isometric force and alter Ca
2+

 homeostasis (93). These findings indicate that high concentrations 

of oxidants over a longer period are required to affect Ca
2+

 regulation (93). Single muscle fibers 

incubated with physiological levels of H2O2 (~ 100 pM) cause an initial increase in isometric 

force production, but the effect is short-lived, as force slowly decreases back to initial levels 

(94). These changes are not associated with an effect on  intracellular Ca
2+

 transients, indicating 

a direct effect on the sensitivity of the contractile proteins to Ca
2+

 at physiological levels of 

oxidants (94). Collectively, these findings suggest both prolonged and acute changes in redox 

status directly modulate skeletal muscle contractile function. 

 Less is known about the effects of NO and nitrogen-based oxidants on skeletal muscle 

contractile function. In a series of experiments, Kobzik and colleagues, showed NO acts to 

depress contractile function of diaphragm fiber bundles (95). They showed pharmacological 

blockade of NOS increased the force of submaximal contractions, whereas exposure to NO 

decreased the force of contractions (95). Exposure of rat diaphragm fiber bundles to ONOO
-
 

decreases isometric force production, which is mediated by a direct effect on the contractile 

proteins, as the maximum calcium-activated force of single rat diaphragm muscle fibers 

decreases in response to ONOO
-
 (96).  
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Fatigued Skeletal Muscle 

 The exact sites of fatigue in vivo are categorized into two types: central versus peripheral 

fatigue. Central fatigue is associated with structures in the brain and spinal cord, where 

peripheral fatigue occurs at sites in the peripheral nerves, neuromuscular junction, and muscle 

(97). The discussion to follow will focus on peripheral fatigue mechanisms, specifically those 

occurring within the muscle, as our current laboratory arrangement excludes examining central 

mechanisms of fatigue. Skeletal muscle fatigue is defined as the reversible decline in muscle 

performance due to repetitive muscle activity (97).  

 The effects of muscle fatigue on performance vary with the type and intensity of 

contraction. Repetitive near maximal contractions lead to rapid, but reversible decreases in force. 

Repetitive submaximal contractions, on the other hand, cause metabolic stress, which is 

characterized by acidosis, accumulation of inorganic phosphate, depletion of phosphocreatine 

stores, oxidative stress, and delayed recovery from fatigue [reviewed in (97)]. Oxidative stress is 

considered to play an important role in the development of fatigued caused by repetitive 

submaximal contractions, as the administration of antioxidants delays fatigue (98-100).  

 Antioxidants have been shown to delay fatigue in a variety of electrically stimulated 

muscle preparations in vitro (35, 36, 98, 101). This also holds true in vivo, as Reid and 

colleagues showed pretreatment with N-acetylcysteine delays fatigue in the human tibialis 

anterior during a 30-minute bout of electrical stimulation at 10 Hz (100). It is important to note, 

however that these results were found using submaximal fatigue protocols, whereas contractions 

at near maximum are unaffected by the administration of antioxidants (36, 99). Collectively, 

these studies show oxidants plays a casual role in development of muscle fatigue. 
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 The results of studies examining the effects of exogenously administered NO and 

nitrogen-based oxidants on muscle fatigue have been ambiguous, showing both depressed and 

enhanced fatigue resistance (102). Studying the effects of NO and nitrogen-based oxidants on 

muscle fatigue is difficult because NO and nitrogen-based oxidants have effects not only muscle, 

but also the vasculature and motor nerves (102). Studies using in vitro muscle preparations, 

which avoids the effects of the vasculature and motor nerves, shows NO and nitrogen-based 

oxidants have no effect muscle fatigue development. Thus, recent authoritative reviews on this 

topic exclude NO and nitrogen-based oxidants as substantial contributors to the development of 

muscle fatigue [reviewed in (102, 103)].  

Reid’s Model   

 Based on the findings presented above, a model of how cellular redox status modulates 

skeletal muscle contractile function has been purposed by Reid and is shown in Figure 3 (38). In 

Reid’s model, resting skeletal muscle exists in a slightly reduced state, which is not optimal for 

contractile function. However, a moderate increase in oxidants to a slightly more oxidized state 

is optimal for skeletal muscle contractile function. In this case, the increase in oxidants is not 

large or prolonged enough to lead to cell damage (i.e., non-pathological) (41). On the other hand, 

excessive production or exposure of oxidants leads to oxidative stress, and excessive production 

or exposure to antioxidants leads to reductive stress, with both depressing skeletal muscle 

contractile function. A shift to a state of oxidative stress could be the result of inflammation, 

disuse, or diseases states [reviewed in (41, 104, 105)].  

Targets of Redox Modulation 

 The targets of redox modulation of skeletal muscle proteins have been an area of intense 

research for many years, and the mechanisms have yet to be fully elucidated. A vast array of 
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important regulator proteins important for sarcolemma function, calcium regulation, and 

myofilament interaction can be oxidized or nitrated and their function modified. Oxidants can 

modify protein function by altering tertiary structure, and thereby important regulation sites and 

reaction kinetics. Cysteine residues, which contain the thiol moiety (-SH) undergo reversible 

thiol-disulfide interactions with oxidants, and are common sites of modification (106). A number 

of proteins associated with excitation-contraction coupling undergo reversible thiol-disulfide 

interactions, such as ion transport pathways [reviewed in (107)], Ca
2+

 release channel/ryanodine 

receptor (108), sarcoplasmic reticulum Ca
2+

-ATPase (109-111), troponin (111, 112), 

tropomyosin (113), myosin (114, 115), and actin (116, 117). 
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Figure 3. An illustration of the effect of cellular redox status on isometric force production in skeletal muscle.  An unfatigued 

muscle in reductive stress due to a reducing agent or antioxidant.  The basal state of unfatigued muscle. This state is not optimal for 

maximal force production.  Unfatigued muscle exposed to low-levels of oxidants. This state is optimal for maximal force 

production.  Muscle adversely affected by excessive oxidant production. This could be due to excessive oxidant production in 

response to disease or muscle atrophy. This figure was redrawn from Reid (38).
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The Role of SOD1 in Skeletal Muscle Homeostasis 

 It is clear that optimal levels of SOD1 are necessary for skeletal muscle homeostasis, as 

SOD1 transgenic mice display an accelerated skeletal muscle myopathy. The muscle dysfunction 

in these mice coincides with the presence of oxidative stress, suggesting SOD1 plays a crucial 

role in mediating skeletal muscle redox status. 

 SOD1 knockout mice display premature degeneration of their skeletal muscle. For 

example, at 3-6 and 19-24 months of age mass of the hindlimb musculature is reduced by 21% 

and 51% compared to age-matched control mice, respectively (118). The loss in muscle mass in 

aged SOD1 knockout mice is associated with significant decreases in fiber cross-sectional area, 

the number of type IIb muscle fibers, force-generating capacity, and endurance capacity (119). 

Both young and old SOD1 knockout mice also exhibit early onset of denervation and motor unit 

loss (119-123). Importantly, changes in neuromuscular structure are driven by muscle SOD1 

expression, because mice with neuron specific knockout of SOD1 do not display muscle 

denervation (120).  

 The accelerated age-related loss of skeletal muscle mass and function in SOD1 knockout 

mice is presumably due to a reduction in scavenging of superoxide radicals (118). Isolated 

skeletal muscle fibers from SOD1 knockout mice exhibit elevated levels of oxidant production 

(124). In addition, mitochondria isolated from SOD1 knockout mice produce more superoxide 

radical than wild-type mice, and they also, surprisingly, produce more hydrogen peroxide (119). 

As expected, skeletal muscle from SOD1 knockout mice exhibit elevated markers of oxidative 

injury to proteins, lipids, and DNA (118). In summary, knockout of SOD1 causes muscle 

dysfunction that is associated with oxidative stress.  



www.manaraa.com

26 

 

 Surprisingly, more SOD1 is not necessarily better, as mice over-expressing SOD1 also 

display premature degeneration of their skeletal muscle. For example, transgenic mice over-

expressing a human SOD1 transgene exhibit gross muscle atrophy and elevated levels of serum 

creatine kinase at 2-5 months of age (125). Inspection of muscle morphology in these mice by 

hematoxylin and eosin staining revealed infiltration of fat and fibrous tissue, centrally located 

nuclei, and necrotic muscle fibers (125). Other strains of mice over-expressing human SOD1 

exhibit alterations in muscle structure and function. For example, diaphragm muscle of mice 

over-expressing a human SOD1 transgene exhibits lower specific force, increased non-

contractile tissue, and increased percentage of type IIa muscle fibers compared to wild-type mice 

(126). In another report, 3 different strains of SOD1 over-expressers exhibited neuromuscular 

dysfunction, which was shown by a higher score on the electromyography pathology index and 

impaired performance on a rope grip test compared to wild-type mice (127). Analysis of tongue 

and hindlimb neuromuscular junctions from SOD1 over-expressing transgenic mice are 

abnormal, displaying significant hyperplasia and altered morphology compared to wild-type 

mice (128-131). These findings are particularly interesting because tongue skeletal muscle fibers 

from persons with DS exhibit similar alterations in neuromuscular junction morphology, which 

includes hyperplasia, along with disorganized, and atrophic neuromuscular junctions (52).  

 Alterations in skeletal muscle structure and function in these strains is presumably due to 

an imbalance in the removal of superoxide radical and production of hydrogen peroxide. 

Experiments conducted using primary muscle cell cultures derived from SOD1 over-expressing 

mice provide insight into the effect of SOD1 over-expression on oxidant production and removal 

(132). In this report, myoblast lines were derived from wild-type mice and mice hemi- or 

homozygous for a human SOD1 transgene with SOD1 activities 3- and 5-fold higher than wild-
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type, respectively. The authors were able to demonstrate that as the activity of SOD1 increased, 

more superoxide radical was scavenged and more hydrogen peroxide was produced. SOD1 over-

expression also leads to the production of other oxidants. Muscle extracts from two strains of 

mice over-expressing a human SOD1 transgene generated significantly more hydroxyl radical 

compared to wild-type mice (127). Along with producing greater amounts of hydroxyl radical, 

these mice also display elevated markers of lipid peroxidation (125).  

 Importantly, the changes in skeletal muscle structure and function in SOD1 over-

expressers are likely mediated by a direct effect of SOD1 expression in muscle. For example, 

transgenic mice with muscle-restricted over-expression of a human SOD1 transgene exhibit 

similar alterations in muscle structure compared to mice with systemic over-expression (133). 

For example, these mice exhibit small and irregular shaped muscle fibers with centrally located 

nuclei, infiltration of loose connective tissue, apoptotic nuclei, denervation, neuromuscular 

junction abnormalities, and increased markers of muscle protein oxidation and nitration. In 

summary, similar to SOD1 knockout mice, mice with transgenic over-expression of SOD1 

exhibit skeletal muscle dysfunction that is associated with oxidative stress. 

 Mutations in the SOD1 gene also lead to skeletal muscle dysfunction. Approximately 

20% of familial amyotrophic lateral sclerosis cases are due to a mutation in the SOD1 gene 

(134). Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by death of 

motor neurons, muscle wasting, and death (135). It is becoming accepted that skeletal muscle has 

a primary role in initiating amyotrophic lateral sclerosis pathology, as animal models of muscle-

restricted SOD1 mutation are sufficient to induce muscle atrophy, dysfunction, and oxidative 

stress (133, 136).  
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 Collectively, these studies show the essential role that normal levels and normal function 

of SOD1 have on skeletal muscle homeostasis. SOD1 knockout, over-expression, and mutation 

all lead to skeletal muscle dysfunction that is associated with oxidative stress. Thus, over-

expression of SOD1 could play a role in DS muscle weakness. 

Methodological Considerations 

Studying the Effects of Trisomy 21 

 The initial sequencing of Hsa21 in 2000 indicated the chromosome contained over 250 

genes (137). This number has grown to over 400 genes in 2005 [see database outlined in (3)]. 

The altered expression of Hsa21 genes results in the DS phenotype and associated pathology, but 

how the triplication of Hsa21 actually results in DS phenotypes is not known and is an intense 

area of research (5). 

 The “gene dosage effects” hypothesis was the first attempt to explain how triplication of 

Hsa21 genes results in the development of DS phenotypes. It proposes that increased amounts of 

normal genes produce increased amounts of gene products, and the increase in protein above 

normal alters typical development. Theoretically, an extra copy of Hsa21 would lead to a 50% 

increase in gene expression compared to euploid individuals (i.e., those with 2 Hsa21). However, 

this is not always the case and the expression of genes on other chromosomes is affected (138-

141). Thus, the “gene dosage effects” hypothesis has been continually modified because it does 

not explain the inter-individual differences observed in people suffering from DS (142).  

A modified form of the original “gene dosage effects” hypothesis has been proposed 

(143). It proposes that the variability in DS phenotypes is a result of a vast and complicated 

network of altered gene expression caused by the triplication of Hsa21 genes. A discussion of the 

genetic mechanisms effecting the development of DS phenotypes is beyond the scope of this 
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review; however it is important to understand that DS-related phenotypes are the result of 

complex genetic intricacies, and the study of trisomy 21 requires careful consideration of 

available models. A number of mouse models of DS exist that recapitulate many of the 

phenotypes observed in the human condition. 

Mouse Models of Down syndrome 

 The mouse has been the model of choice for creating genetic models of human diseases, 

and has been proven invaluable in understanding the genetic underpinnings of DS. The long arm 

of Hsa21 is homologous to Mmu16, 17, and 10 (144). Mmu16 contains the largest number of 

genes homologous to Hsa21, and forms the basis of DS mouse models (144). Many different 

mouse models of DS have been engineered to over-express single genes, are trisomic for the 

entire Mmu16, segmental trisomic for Mmu16, segmental trisomic but disomic for individuals 

genes, and trisomic for Hsa21 [reviewed in (47, 145)]. 

 The simplest way to explore the effect of single genes on DS phenotypes is to create 

transgenic mice that over-express the specific gene of interest. Mice over-expressing amyloid 

precursor protein, cystothionine -synthase, down syndrome critical region 1, dual-specificity 

tyrosine-(Y)-phosphorylation regulated kinase 1A, S100, drosophila single-minded, and SOD1 

have been used to examine the relative contribution of these genes on DS phenotypes [reviewed 

in (47)]. However, they are unlikely to capture the full effect of trisomy when examined in 

isolation. 

 The most widely studied and well established mouse model of DS is the Ts(17
16

)65Dn 

(Ts65Dn) mouse developed by Muriel Davisson and colleagues at the Jackson Laboratory using 

-radiation (146, 147). These mice are segmental trisomic for Mmu16, which corresponds to 

roughly 132 genes (47) (Figure 4). These mice recapitulate many DS phenotypes including, 
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lower birth weight, increased incidence of obesity, reduced exercise capacity and muscle 

strength, cognitive and behavioral impairments, hematological abnormalities, craniofacial 

abnormalities, prenatal lethality, sleep disturbance, cardiovascular malformations, and neurologic 

structural deficiencies (summarized in Table 2) (48, 49, 51, 147-154). The chief limitation of 

Ts65Dn mice is they are not trisomic for all Hsa21 orthologs (47). In addition, male Ts65Dn 

mice are sterile (147).  

 Many other mouse models of DS have been developed. The Ts[Rb(12.17
16

)]2Cje 

(Ts2Cje) mouse is segmental trisomic for the same genes as Ts65Dn, but the triplicate segment 

was fused to Mmu12 and these mice are fertile (155). It remains to be determined whether these 

mice display similar phenotypes as the Ts65Dn mouse. Other segmental trisomies of Mmu16 

include Ts (12; 16)1Cje and Dp (16Cbr1-ORF9) (Ts1Cje and Ts1Rhr, respectively) (Figure 4). 

Cross breeding the Ts1Cje and Ts1Rhr to Ts65Dn has produced two other DS mouse models: 

Ms1Cje/Ts65Dn and Ms1Rhr/Ts65Dn, respectively (Figure 4) (156, 157). The newest segmental 

trisomic mouse model for Mmu16 is the Dp(16)1Yu/+ mouse, which contains all of the Hsa21 

orthologs on Mmu16 (much larger segment than the Ts65Dn mouse); however, these mice have 

yet to be fully characterized (158).  

 The last two mice are trisomic for the entire regions of Mmu16 and Hsa21 (referred to as 

Ts16 and Tc1, respectively). The original mouse model of DS, Ts16, is trisomy for the entire 

Mmu16, which contains some Hsa21 orthologs, but also large segments of non-homologous 

genetic material as well (contained on Hsa3, 8, 12, 6, and 22) (Figure 4) [reviewed in (46)]. 

These mice die perinatally and have limited value. The Tc1 mouse carries three copies of about 

92% of Hsa21 genes (Figure 4) (159). Tc1 recapitulates many DS phenotypes, however, there is 
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a high degree of mosaicism because mouse cells eliminate Hsa21 during cell division over time 

[reviewed in (47, 160)]. 

Advantage of Using the Ts65Dn Mouse 

 The expression level of the trisomic genes in 6 different tissues of the Ts65Dn mouse has 

been determined, and this analysis included skeletal muscle. These studies revealed the 

expression of SOD1 and GPX1 in skeletal muscle from Ts65Dn mice was 1.45- and 1.02-fold 

(reference number for euploid is 1), respectively (161). Unfortunately, the expression of CAT 

was not determined. Kahlem et al. reported similar findings, as SOD1 gene expression was 1.87-

fold higher in Ts65Dn mice compared to euploid littermates (53). These findings provide 

evidence that SOD1 is over-expressed and there is no up-regulation of GPX1 in Ts65Dn skeletal 

muscle 

 There is also evidence that non-muscle tissues from the Ts65Dn mice exhibit oxidative 

stress. Cultured hematopoietic progenitors stem cell populations derived from bone marrow of 

Ts65Dn mice have a 20-45% higher level of oxidant production compared to wild-type cells 

(56). These cells also exhibited increased markers of protein oxidative damage, which was 

shown by an increase in protein carbonyls and 3-nitrotyrosine (56). Levels of lipid peroxidation 

are elevated in the brain of Ts65Dn mice (162), which further supports that Ts65Dn mice exhibit 

oxidative stress.   

These mice also exhibit neuromuscular dysfunction in vivo. For example, Costa et al. 

showed 4-8 month old Ts65Dn mice exhibit significant dysfunction in maximum running speed 

on a treadmill, grip strength, and swimming speeds compared to euploid littermates (51). Klein 

et al. corroborated these findings, as Ts65Dn mice exhibited a 15% reduction in grip strength 

compared to  euploid littermates, although this was not statistically significant (150).  
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In summary, Ts65Dn mice exhibit many of the same phenotypes observed in the human 

condition and are the most studied and established mouse model of DS. The Ts65Dn mouse is a 

suitable model for the purposes of the present study based on: 1) Gene expression analyses of 

skeletal muscle from Ts65Dn mice show that SOD1 is up-regulated without any compensation 

by GPX1; 2) Non-muscle tissues from Ts65Dn mice demonstrate oxidative stress; 3) Ts65Dn 

mice exhibit signs of muscle weakness in vivo. 
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Figure 4. This illustration shows the regions of human chromosome 21 represented in the mouse models of Down syndrome. The 

number of genes preserved in the models is indicated below each segment (46). This figure was adapted from Salehi et al. and Rachidi 

and Lopes (47, 163). Chromosome information was attained from Ensembl. 
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Table 2. Phenotypes present in persons with Down syndrome and Ts65Dn mice. This table was partially redrawn from Patterson and 

Costa (145). Individual references are embedded in the text. 

 

Feature Persons with DS Ts65Dn 

Cognitive and behavior impairments Yes Yes 

Altered brain function and structure Yes Yes 

Gait abnormalities Yes Yes 

Growth and development Slow growth and short stature Lag in growth and body weight 

Obesity Yes Yes 

Reduced exercise capacity Yes Yes 

Muscle weakness Yes Yes 

Craniofacial abnormalities Yes Yes 

Hematological and/or immunological abnormalities Yes Yes 

Male sterility Yes Yes 

Pregnancy Ovulation difficulties, shorter 

reproductive life 

Small litters, shorter reproductive life 

Aging Shorter life expectancy Shorter life expectancy 

Oxidative stress Yes Yes 
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Prenatal lethality Yes Yes 

Sleep disturbances Yes Yes 

Congenital heart defects Yes Yes 
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Assessment of In Vitro Skeletal Muscle Contractile Function 

 A brief description of the methodology and technical considerations involved in 

assessing in vitro skeletal muscle contractile function follows, which will include a brief 

overview of the force-frequency relationship, experimentally induced fatigue, and the 

effects of bath temperature, muscle bulk, and fiber type.  

Force-Frequency Relationship 

 The force-frequency relationship is often examined in studies of in vitro skeletal 

muscle contractile function. After excision of a whole muscle or strip of muscle it is 

placed in an aerated salt solution and electrically stimulated to contract isometrically 

using two platinum electrodes (Figure 5). The length at which the muscle is positioned 

determines its force output (i.e., the length-tension relationship of skeletal muscle). Thus, 

the muscle length at which active tension is maximal must first be determined and is 

referred to as optimal length (Lo) (164). The force-frequency relationship is determined at 

Lo by stimulating the muscle at increasing frequencies of electrical stimulation; usually a 

range is used from 10 to 250-300 Hz (this is to induce fused tetanus) with tetanic train 

durations of 500 ms [e.g., (165)]. The data generated are expressed in units of force (N) 

and stress or force per area (N/cm
2
). The cross-sectional area of the muscle is calculated 

according to the equation of Close (166) (Equation 1), 

 
  06.171.0 Length

Weight
      Equation 1 

The length of the muscle is multiplied by 0.71 to correct for fiber length (167), and then 

multiplied by the density of muscle (1.06 mg/mm
3
). 



www.manaraa.com

37 

 

Experimentally Induced Fatigue 

 There are two main types of fatigue that can be induced with electrically 

stimulated contractions, and these include high- and low-frequency fatigue [reviewed in 

(168)]. High-frequency fatigue is characterized by a rapid loss in force production with a 

decrease in the amplitude and increase in the duration of the compound muscle fiber 

action potential (168). These changes are attributed to a failure of impulse propagation 

across the sarcolemma (likely in the t-tubule system) due to the disruption of ion 

concentration gradients (particularly K
+
). Recovery from high-frequency fatigue occurs 

within seconds to minutes after the cessation of exercise. High-frequency fatigue is not 

considered an important cause of fatigue in vivo, as skeletal muscle possesses specific 

adaptations that prevent its occurrence (e.g., motor unit recruitment patterns, tightly 

regulated capillary system) (168).  

 Low-frequency fatigue is elicited using far less intense stimulation (30-40 Hz 

versus 100 Hz). This type of fatigue is characterized by metabolic stress, which includes 

depletion of glycogen and phosphocreatine, and increases in H
+
 and Pi. Recovery from 

low-frequency fatigue occurs over hours to days. In addition, ROS play an important role 

in the development of this type of fatigue (36). There is no established stimulation 

protocol to induce low-frequency fatigue. This type of fatigue is elicited using repeated 

short tetani with low stimulus frequencies [e.g., 40 Hz, 0.5 trains/s, 500 ms trains (36, 

165)]. These types of protocols continue for a set amount of time (e.g., 5 min) or until 

force is reduced by a predetermined percentage of the initial force (e.g., 50%).  
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Effect of Bath Temperature 

 One common concern when using in vitro skeletal muscle preparations is the 

stability of the specimen (usually defined as an irreversible decrement in force production 

over time). The temperature of the bath requires careful consideration. Segal and 

Faulkner investigated the effect of temperature on specific maximal tetanic isometric 

force (P0) of rat soleus and extensor digitorum longus at 20, 25, 30, 35, and 40C over 60 

minutes. They found the stability of the muscles was temperature dependent; higher 

temperatures resulted in progressively larger decrements in force production over time 

(169). Most studies examine the force-frequency relationship and fatigue at 37C because 

this temperature is physiologically relevant [e.g., (36, 165)]. The literature supports this 

choice, as oxidants are important contributors to the development of fatigue and the 

depression of P0 at 37C (170, 171). For example, Moonapar and Allen showed that 

single skeletal muscle fibers fatigued at a faster rate at 37C compared to 22C, but this 

effect was abolished by the addition of Tiron (scavenges superoxide radical and hydroxyl 

radical) to the bath (171). These results suggest that the production of oxidants is an 

important mediator of fatigue at 37C, and it is therefore, appropriate to study the effects 

of oxidants on fatigue at this temperature. 

Effect of Muscle Bulk 

The stability of the specimen is also affected by the size of the muscle. 

Limitations in O2 diffusion into the depth of the muscle can create an anoxic core. Mouse 

soleus and extensor digitorum longus muscles are roughly 10 mg, compared to the rat 

soleus and extensor digitorum longus used by Segal and Faulkner that are 70-90 mg. 

Segal and Faulkner suggest muscles less than 30 mg are sufficiently small for adequate 
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oxygenation and nutrient uptake (169). This has been refuted recently, as the 

development of a hypoxic core does contribute to fatigue induced using stimulation 

frequencies of 50-70 Hz (172). Thus, the development of anoxic core is a limitation when 

studying in vitro muscle fatigue. 

Fiber Type Effects 

 The performance characteristics of skeletal muscle are largely influenced by the 

distribution of the myosin heavy chain isoforms (i.e., fiber types) (89). The mouse soleus 

is composed predominantly of Type I and Type IIa muscle fibers, whereas the extensor 

digitorum longus is composed of mostly Type IIa and IIb muscle fibers (173). Muscles 

composed of Type I and Type IIa fibers are more oxidative and contain larger stores of 

endogenous antioxidant proteins [reviewed in (41)]. This observation suggests that 

muscles like the mouse soleus would be more resistance to changes in redox status than 

the extensor digitorum longus. However, Plant et al. showed that P0 of mouse soleus and 

extensor digitorum longus were equally affected by oxidizing agents, suggesting 

researchers would be justified in choosing either muscle to study the effect of oxidants on 

skeletal muscle function (174). 
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Figure 5. This figure shows the experimental set-up to study skeletal muscle function in 

vitro.  
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Affymetrix Microarray Technology 

 Microarray technology allows for the quantification of mRNA from thousands of 

genes, and is commonly used to examine the effect of perturbations on skeletal muscle 

gene expression (e.g., disease or atrophy) (175). The technology is based on the principle 

of Watson and Crick base pairing, where two complementary strains of DNA form 

hetero-duplexes. The process is largely automated and performed by specialized 

microarray core facilities. A number of platforms have been developed, and one of the 

most common is the Affymetrix platform. Affymetrix microarrays are made using a 

process called in situ synthesis, where oligonucleotides (short strands of DNA) are 

synthesized base-by-base on the glass surface of the array (176). Each oligonucleotide or 

probe is specific for a particular gene. Affymetrix 1.0 ST arrays contain ~4 probes per 

exon and ~40 probes per gene, which allows for both gene-level and exon-level analyses 

(177). The Mouse Gene 1.0 ST Array probes for 28,853 genes with 770,317 distinct 

probes (178). Affymetrix microarrays are a one-color oligonucleotide array, which means 

there is only one sample per array.  

 The first step in using the microarray is extracting RNA from the sample (176). 

Once the RNA is extracted from the sample it is used as a template to produce cDNA and 

then biotin-labeled (176). At this point the single-stranded cDNA is introduced into the 

array. This step is where the oligonucleotides on the array form hetero-duplexes with the 

labeled cDNA; this process is called hybridization (176). Following hybridization the 

arrays are washed to ensure that only complementary hetero-duplexes remain, which 

reduces non-specific binding and cross-hybridization (176). The final step is to produce 

an image of the surface of the array using a scanner (176). The intensity of the 
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fluorescent probe attached to the hetero-duplexes is proportional to the RNA transcript 

present in the sample (175). The dataset generated is extremely large and data analysis is 

tedious and time consuming. The identification of genes that are differentially expressed 

can be determined using a variety of statistical analyses specifically developed for 

microarray data. These genes are further analyzed by patterns of expression and 

identification of their biological meaning. 

 Affymetrix has developed a number of built-in methods to reduce systematic 

errors and bias introduced during the experiment. These processes are referred to as 

normalization, and include data cleaning and transformation, assessing array quality, and 

between-array normalization (176). Data cleaning involves examining the background 

and noise signal. The Gene 1.0 ST Array estimates background auto-fluorescence using a 

set of approximately 17,000 generic background probes (178). Affymetrix has also 

developed a method to examine signal noise, which is referred to as the Q value (179). 

The Q value is a measure of the pixel-to-pixel variation of the probe cells on the array 

(179). There are no guidelines for what background values are acceptable, but arrays 

from the same experiment should have similar background values (179).  

 It is common practice that the raw intensities from microarray data are log 

transformed before data analysis (176). The most common transformation is to use 

logarithms to base 2 (176). The purpose of transformation is to ensure that there is a 

broad range of intensities, the variability at each level of intensity is relatively constant, 

and the distribution of experimental errors and intensities are close to being normally 

distributed (176). 
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 Affymetrix has developed several methods to assess array quality. These include, 

poly-A controls, hybridization efficiency, and positive and negative control genes. Poly-

A controls are genes of B. subtilis that have been modified by the addition of poly-A tails, 

spiked in the RNA sample, and carried through the sample preparation process (179). 

They are evaluated like internal control genes, and their signal intensity should increase 

with the level originally introduced into the sample (179). Hybridization controls are 

composed of a mixture of biotin-labeled cRNA transcripts with increasing concentrations 

introduced during hybridization (179). Signal intensity of the hybridization controls 

should increase with the level originally introduced during hybridization. Actin and 

GAPDH are used as internal control genes to assess RNA sample and assay quality (179). 

The signal values of the 3’ probe sets for actin and GAPDH are compared to the signal 

values of the 5’ probe sets. The ratio of the 3’/ 5’ should be no more than 3 (for a 1-cycle 

assay). Values higher than 3 are an indication of degraded RNA or inefficient 

transcription (179). The arrays also contain negative controls genes. The Mouse Gene 1.0 

ST array contains 5,222 putative intron-level probes from putative constitutive genes 

(178). 

 Between-array normalization is performed using a scaling factor because the 

intensity of each array varies from one array to the next (178). In order to reliably 

compare data from multiple arrays, the overall intensity of the arrays must be equalized. 

The average intensity of each array is multiplied by the scaling factor to bring it to an 

arbitrary target value (178).  

 In summary, microarray technology is an extremely useful tool to examine 

changes in global gene expression. The adoption of standard laboratory practices, 
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specialized microarray laboratories, and built-in safeguards make microarray a feasible 

and reliable methodology.  

Properties of Single Skeletal Muscle Fibers in Culture 

 The flexor digitorum brevis (FDB) muscle culture has emerged as a valuable tool 

to study basic skeletal muscle biology. Methodology to isolate single skeletal muscle 

fibers was initially developed by Bekoff and Betz, for the purpose of examining the 

sensitivity of the mammalian motor endplate to acetylcholine in high resolution (180). 

Bischoff later expanded the method for the purpose of studying the in situ behavior of 

skeletal muscle satellite cells (181). Since then, a number of modifications have been 

made to the methodology for the purpose of isolating single fibers from a variety of 

muscles. The muscle most commonly used is the flexor digitorum brevis (FDB), which is 

a superficial, multi-pennate, and thin muscle of the foot. It originates from the tendon of 

the plantaris and converges into long tendons that attach to the digits. The FDB is ideal 

for isolating fibers because it yields several hundred fibers, whereas larger muscles of the 

hindlimb yield fewer fibers mainly due to their larger size. The fibers of the FDB are 

significantly shorter compared to other limb muscles, which prevents them from tangling 

together and breaking during the isolation procedure.  

 Rat FDB fibers are roughly ~1 mm in length with a diameter of ~20 m (181). 

These fibers contain roughly ~125 myonuclei and ~3 associated satellite cells per fiber 

(181). The mouse FDB fibers are much shorter with a length of ~350 m, but they have a 

slightly larger diameter of ~30 m (182). Mouse FDB muscles are predominantly fast-

twitch, with 80-90% Type IIa/x and 10-20% Type I fibers (183-185).  
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 Importantly, FDB fibers maintain their physiological properties in vitro. Liu et al. 

showed FDB fibers exhibit no change in resting or peak calcium transients in response to 

electrical stimulation for up to 8 days in culture (186). Ravenscroft et al. has also reported 

similar findings that calcium transients are unchanged for up to 8 days in culture, and 

they also showed fibers maintain the correct spatial resolution of skeletal muscle proteins 

(185). These findings suggest the components of the excitation-contraction coupling 

pathway of FDB fibers remain intact in culture. Thus, the FDB provides a unique 

opportunity to study adult muscle in culture. 

Oxidant Detection by 2,7-dichlorodihydrofluorescin diacetate 

 Many compounds have been developed to detect the presence of oxidants. The 

most common detection agent is 2,7-dichlorodihydrofluorescin diacetate (H2DCFDA). 

The probe has been recently adapted for use in isolated single skeletal muscle fibers 

(187). It is a cell permeable, polar, and non-fluorescent molecule that can diffuse into 

cells. Upon entry the diacetate group is removed by the cell’s endogenous esterases 

leaving H2DCF, which is retained by the cell. H2DCF can be oxidized to yield fluorescent 

DCF that can be monitored by fluorescence microscopy.  

 A number of chemical species can oxidize H2DCF to fluorescent DCF. H2DCF 

has little or no reactivity to superoxide radical or hydrogen peroxide (188, 189). 

However, hydrogen peroxide can oxidize DCF through a peroxide-catalyzed reaction 

(189). Nitric oxide, nitric oxide derivatives, hydroxyl radical, peroxynitrite, oxidized 

thiols, and metal centers directly oxidize DCF (189, 190). Thus, due to the lack of 

specificity of DCF, it is considered an indicator of net intracellular oxidant production 

(188, 189). It must be acknowledged that the conversion of H2DCF to DCF occurs in 
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competition with other cellular oxidation reactions, such as those involving the 

endogenous antioxidants (190) 

 Three important methodological factors must be considered when using the 

H2DCFDA assay, as outlined by Arbogast and Reid (190). These include photo-

oxidation, photo-bleaching and dye leak. First, photo-oxidation artifact is controlled by 

conducting experiments in a darkened laboratory and by standardizing excitation 

parameters. Second, photo-bleaching is minimized by preloading fibers with excess 

H2DCFDA. Last, dye leak is affected by temperature; it is detected at 37 but not at 23 

(191). Therefore, careful control of the above factors is essential to produce reliable data 

using the H2DCFDA assay. 
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CHAPTER III. FUNCTIONAL CHARACTERIZATION OF SKELETAL 

MUSCLE IN DOWN SYNDROME MICE 

 

ABSTRACT 

 Persons with Down syndrome (DS) suffer from low muscle strength that limits 

their functional performance. Triplication and altered expression of chromosome 21 

genes, including copper-zinc superoxide dismutase (SOD1) could lead to oxidative stress 

and impaired skeletal muscle function. The purpose of these experiments was to perform 

a functional characterization of skeletal muscle from Ts65Dn mice with the intent to 

reveal potential mechanisms responsible for DS-associated muscle weakness. SOD1 

expression and protein carbonyls were 26% and 21% higher in Ts65Dn than wild-type 

(WT) muscle, respectively. However, there was no evidence of increased basal muscle 

oxidant production in Ts65Dn muscle compared to WT. Ts65Dn muscle exhibited 

normal force generation in the unfatigued state, but there was a 12% reduction in force 

generation following fatiguing contractions. The development of muscle weakness in 

Ts65Dn mice was not explained by myosin heavy chain composition. Limitation in 

mitochondrial function was postulated to play a role in the development of post-fatigue 

weakness, which was supported by a 22% reduction in cytochrome c oxidase expression 

in Ts65Dn muscle. Microarray analysis also revealed the alteration of numerous 

pathways in Ts65Dn muscle, including: proteolysis, glucose and fat metabolism, 

neuromuscular transmission, DNA damage, and ATP biosynthesis. Collectively, these 

findings provide the first insight into the potential mechanisms of muscle dysfunction in 

DS.  
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INTRODUCTION 

 Down syndrome (DS) or trisomy 21 is the most common genetic cause of 

intellectual disability in the United States and occurs in roughly 1 in 700 live births (192). 

More than 300 genes are encoded by human chromosome 21 (3), and triplication disrupts 

normal gene expression resulting in the DS phenotype and associated abnormalities (2). 

All individuals born with DS will experience some medical issues that will require 

sustained medical care, which can include craniofacial abnormalities, intellectual 

disability, Alzheimer’s-like characteristics of the brain, obesity, gastrointestinal disorders, 

hematological disorders, congenital heart disease, and hypotonia and low muscle 

strength, among many others (4).  

 Considerable evidence exists in the literature showing that intellectual disability 

only partially explains the very low muscle strength in persons with DS (12-20). Muscle 

weakness affects many different areas of daily function in both young and old adults with 

DS, including limitations in walking, running, rising from a chair, and ascending and 

descending stairs (6, 7, 14). Furthermore, mobility impairments are predictive of 

mortality in adults with DS (26). The cause of muscle dysfunction in persons with DS is 

unknown, and thus, there is a critical need to identify mechanisms underlying their 

muscle dysfunction. 

 Oxidative stress is thought to be a key factor in the development of DS-related 

pathologies, and may be the result of triplication and altered expression of chromosome 

21 genes, which includes copper-zinc superoxide dismutase (SOD1) (32, 193). The over-

expression of SOD1 could lead to an increase in the production of hydrogen peroxide 

above the level that can be neutralized by normal antioxidant defenses (32, 193). This 
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notion is supported by findings that show cortical neurons and astrocytes from fetuses 

with DS exhibit a higher level of oxidant production (42). Also, non-muscle tissues from 

persons with DS exhibit elevated markers of oxidative injury to DNA, lipid, and protein 

(43-45). Large and prolonged elevations in oxidants contribute to impaired muscle 

function in a number of diseases, such as Myotonic and Duchenne muscular dystrophies, 

heart failure, cancer, and HIV/AIDS (40). It is currently unknown whether oxidative 

stress contributes to the development of skeletal muscle weakness in persons with DS.  

 In these experiments we utilized the Ts65Dn mouse to examine the impact of DS 

on skeletal muscle contractile properties and characteristics. Skeletal muscle function in 

the Ts65Dn mouse has not been examined previously and there is an urgent need to 

establish an animal model to explore the muscle dysfunction that is widely reported in 

persons with DS. Therefore, the purpose of these experiments was to characterize skeletal 

muscle function, morphology, myosin heavy chain composition, and global gene 

expression patterns in Ts65Dn muscle, which is the most widely studied and well-

established mouse model of DS (146). We also sought to examine the effect of segmental 

trisomy on skeletal muscle protein antioxidant expression and oxidant production.  

 Our data revealed that Ts65Dn muscle over-expresses SOD1 protein but this was 

not associated with oxidative stress. Ts65Dn soleus muscles displayed normal force 

generation in the unfatigued state, but exhibited muscle weakness following fatiguing 

contractions. We show that a reduction in cytochrome c oxidase expression may 

contribute to the impaired muscle performance in Ts65Dn soleus. These findings support 

the use of the Ts65Dn mouse model of DS to delineate mechanisms of muscle 

dysfunction in the human condition.  
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METHODS 

Animals and Experimental Procedures 

 The Syracuse University Institutional Animal Care and Use Committee approved 

the use of animals for these experiments, which followed the Guiding Principles for the 

Care and Use of Vertebrate Animals in Research and Training established by the 

American Physiological Society. Male B6EiC3Sn a/A-Ts(17
16

)65Dn (Ts65Dn) mice and 

wild-type (WT) colony controls were purchased from the Jackson Laboratory (Bar 

Harbor, ME) (total n=44; 18 Ts65Dn and 26 WT). Ts65Dn mice are segmental trisomic 

for mouse chromosome 16 from ZNF295 to MRP139, which corresponds to roughly 132 

out of the 230 genes in the human condition (144). These mice display many of the 

phenotypes observed in the human condition, including structural and cognitive 

alterations of the brain, craniofacial abnormalities, and congenital heart defects (48-50).  

 Mice were housed in groups of 3-4 by genotype and maintained on a 12:12 hr 

light: dark cycle with food and water provided ad libitum. Mice were anesthetized with 

an intraperitoneal injection of sodium pentobarbital (120 mg/kg) with supplemental 

dosages provided as needed to maintain a surgical plane of anesthesia. Following a 

procedure to surgically remove the hindlimb musculature the animals were sacrificed by 

removal of the heart and diaphragm, followed by the performance of a gross necropsy.  

 Two groups of Ts65Dn and WT mice were employed in this study. Muscles 

obtained from the first group of animals were utilized for measurement of in vitro 

contractile function, global gene expression by microarray, myosin heavy chain 

composition, hydrogen peroxide content, and protein expression levels (Table 3). These 

mice were 4-7 months of age at the time of experimentation. Muscles obtained from the 
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second group of mice were utilized for measurements of oxidant production in isolated 

skeletal muscle fibers, immunofluorescence labeling of SOD1 in single fibers, and soleus 

muscle fiber morphology (Table 3). These mice were ~13 months of age at the time of 

experimentation.  

 The soleus was the primary muscle under investigation in these experiments. 

However, the gastrocnemius was included to assess hydrogen peroxide content, and 

single fibers of the flexor digitorum brevis (FDB) were utilized to assess oxidant 

production and immunofluorescence labeling of SOD1. The soleus was an appropriate 

muscle to study in these experiments since it exhibits a similar myosin heavy chain 

composition to human locomotor muscles (194, 195). Ideally, the soleus would have been 

utilized for all assays. However, measurements from the gastrocnemius were also 

included on the basis that the soleus provided a limited amount of tissue, and the isolation 

of single fibers was performed using the FDB due to the large number of viable fibers 

that could be obtained. 

In vitro muscle contractile function 

 The soleus muscle was excised and immediately placed in a dissecting dish 

containing Krebs-Hensleit solution equilibrated with 95% O2, 5% CO2 at room 

temperature. The proximal and distal tendons were clipped with light-weight Plexiglas 

clamps (Harvard Apparatus, Holliston, MA) and the muscle was suspended vertically in a 

water-jacketed organ bath equilibrated with 95% O2, 5% CO2 gas at 25C containing 

Krebs-Hensleit solution and 25 µM d-tubocurarine. The clamp attached to the proximal 

end of the muscle was secured to a force transducer (301C; Aurora Scientific, Aurora, 

ON) and the clamp attached to the distal end of the muscle was secured to a fixed 



www.manaraa.com

52 

 

Plexiglas rod; this positioned the muscle directly between platinum wire stimulating 

electrodes. Following a 15-minute equilibration, optimal contractile length (L0) was 

determined by stimulating the muscle with supramaximal voltage and adjusting muscle 

length in ~0.5 g increments until maximum force was achieved. Force output was 

continuously monitored using a computerized data acquisition system (Aurora Scientific). 

Following the determination of L0, the bath temperature was increased to 37C and the 

muscle was allowed to equilibrate for an additional 30 minutes. The force-frequency 

relationship was determined using contractions evoked at stimulus frequencies of 1, 15, 

30, 50, 80, 120, 160, 250, and 300 Hz with train duration of 500 ms with 2 minutes of 

recovery between contractions (Grass S48 stimulator; West Warwick, RI). Two minutes 

following the end of the force-frequency protocol the muscles underwent a fatigue 

protocol (40 Hz, 0.5 trains/s, 500 ms trains) for 5 minutes, followed by a recovery period 

(40 Hz, 0.5 trains/s, 500 ms trains) with force measurements obtained at 30 seconds, and 

1, 2, 5, 10, and 15 minutes. At the end of the contractile protocol, L0 was measured using 

a caliper and the muscle was then removed from the bath, trimmed of excess tendon, 

blotted to remove excess buffer, and weighed. Muscle cross-sectional area was calculated 

by dividing muscle mass by the product of fiber length and muscle density (166). Fiber 

length was calculated by multiplying muscle length by the fiber length coefficient of 0.71 

(167).  A value of 1.06 g/cm
3
 was used for muscle density. Force was expressed in 

absolute values, relative [(% of peak tetanic tension (Po)], and/or stress, which was 

calculated by normalizing to muscle cross-sectional area. Area under the curve was 

calculated using the trapezoidal integral method for the force-frequency, fatigue, and 

post-exercise datum using Prism 5.0. 
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Western blot 

 Soleus muscles were homogenized (1:25, w/v) in phosphate buffer containing 

EDTA, 1% Triton-X, 5 mM DTT, 0.1% SDS, and protease inhibitor (Sigma, St. Louis, 

MO) using a micro-tube pestle with a conical tip (Research Products International 

Corporation, Mt. Prospect, IL). Following complete disruption of the muscle, the 

homogenate was centrifuged at 10,000 g for 10 min at 4C. The protein content of the 

soluble fraction was assessed using the Bradford assay (196). The samples were diluted 

in Laemmli sample buffer (Bio-Rad Laboratories, Hercules, CA) to yield a final protein 

contraction of 2.5 µg/µl and placed in boiling water for 5 minutes. Protein samples (10-

60 µg) were separated by SDS-PAGE using 12% polyacrylamide gels for 1.25 hr, and 

then transferred to nitrocellulose membranes at 275 mA for 2-3 hrs. The membranes were 

stained with Ponceau-S to ensure optimal protein loading and transfer. Membranes were 

then blocked in 1-5% skim milk protein in PBS containing 0.05% Tween 20, and 

subsequently incubated with a primary antibody specific for SOD1 (1:1000, Novus 

Biologicals, Littleton, CO), manganese SOD (SOD2) (1:5000, Cayman Chem, Ann 

Arbor, MI), CAT (1:1000, Calbiochem, Darmstadt, Germany), GPX1 (1:1500, Abcam 

Inc., Cambridge, MA), 4-hydroxynonenal (4-HNE) (1:1000, Santa Cruz Biotechnology, 

Inc., Santa Cruz, CA), cytochrome c oxidase subunit II (COX2) (sc-23984, 1:1000, Santa 

Cruz Biotechnology, Inc.), or glyceraldehyde-3-phosphate (GAPDH) (1:5000, Sigma) 

diluted in blocker for 1-12 hr at 4C. Membranes were subsequently washed with PBS 

and incubated with a horseradish peroxidase-antibody conjugate (1:1000-5000) diluted in 

blocker directed against the primary antibody for 1 hr. Membranes were then washed, 

treated with chemiluminescent reagents (Thermo Scientific, Rockford, IL), and exposed 
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to light sensitive film. The film was scanned and subsequently analyzed using ImageJ 

software (197). Bands were quantified and expressed in arbitrary units relative to the 

GAPDH loading control band. 4-HNE bands were quantified individually and summed to 

obtain a total value. The 4-HNE membranes were stained with Coomassie G250 (Bio-

Rad Laboratories), scanned, and protein per lane was quantified using ImageJ (197). The 

4-HNE bands were expressed relative to total protein per lane. 

Protein carbonyls   

 Protein carbonyl formation was measured as an index of protein oxidation using 

the commercially available OxyBlot assay kit (Millipore, Billerica, MA) according to the 

manufacturer’s instructions. Soluble proteins (15 µg) were reacted with 2, 4-

dinitrophenylhydrazone for 15 minutes. Following the reaction process, 10 µg of 2, 4-

dinitrophenylhydrazone-derivatized protein was loaded onto 12% polyacrylamide gels, 

followed by electrophoresis, transfer of protein to nitrocellulose membrane, and 

visualization of protein according to the procedures described above. Protein bands were 

quantified individually and summed to obtain a total value. The membranes were 

subsequently stained with Coomassie G250 (Bio-Rad Laboratories), scanned, and protein 

per lane was quantified using ImageJ (197). The protein bands were expressed relative to 

total protein per lane. 

Hydrogen peroxide content 

 Hydrogen peroxide (H2O2) content of the gastrocnemius was determined using the 

Amplex Red Hydrogen Peroxide Kit (Invitrogen, Carlsbad, CA). Roughly 50 mg of 

gastrocnemius muscle was homogenized in ice-cold phosphate buffer, followed by 

centrifugation at 10,000 g for 10 min at 4C. The protein content of the soluble fraction 
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was assessed using the Bradford assay (196). The Amplex Red reagent (10-acetyl-3,7-

dihydroxyphenoxazine) reacts 1:1 with H2O2 to produce a fluorescent resorufin, which 

can be measured spectrophotometrically. A standard curve was prepared from 20 mM 

H2O2 working solution to produce H2O2 concentrations of 0, 5, 10, 12.5, 25, 37.5, 50, and 

75 M. Briefly, 50 L of standard curve samples and unknown samples were loaded into 

individual wells of a 96-well microplate in duplicate followed by addition of 50 L of the 

Amplex Red reaction mixture. The plate was incubated in the dark for 10 minutes 

followed by an absorbance reading at 560 nm. The concentration of H2O2 was calculated 

by fitting a line of best fit between absorbance and H2O2 standards. The H2O2 

concentration was normalized to grams of protein in the sample.  

Histology 

 Soleus muscles (contracted and non-contracted) were embedded in O.C.T. 

compound (Sakura Finetek USA, Torrance, CA) and frozen in either liquid nitrogen 

chilled isopentane or on dry ice. The contracted soleus was fixed at Lo before freezing 

and was used to determine the distribution of myosin heavy chain isoforms. Non-

contracted soleus muscles were frozen at resting length and used for the determination of 

muscle morphology using the hematoxylin and eosin stain. Sections from frozen muscles 

were cut at 10-20 µm using a cryostat, mounted on slides, and stored at -80C until 

processing. 

Myosin heavy chain immunofluorescence 

 Muscle sections were air dried for 10 minutes followed by incubation in PBS 

containing 0.5% Triton X-100. Sections were simultaneously exposed to dystrophin 

(Thermo Fisher Scientific, Fremont, CA), myosin heavy chain type I (A4.840; DSHB, 
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IA) and myosin heavy chain type IIa (SC-71; DSHB) antibodies in a dark, humid 

chamber at room temperature for 1 hr. Sections were washed in PBS three times and 

simultaneously exposed to TRIT-C goat anti-rabbit (Invitrogen), Alexa Fluor 350 goat 

anti-mouse (Invitrogen), and FITC goat anti-mouse (Invitrogen) antibodies diluted in 

10% normal goat serum in PBS in a dark humid chamber at room temperature for 1 hr. 

Sections were washed three times in PBS and mounted with Vectashield mounting 

medium (Vector Laboratories Inc., Burlingame, CA). Images were obtained at 10X 

magnification using a Zeiss AxioImager fluorescence microscope equipped with an 

AxioCam MRc digital camera and analyzed with AxioVision software (version 4; Carl 

Zeiss, Germany). The proportions of type I, type IIa, and type IIx myosin heavy chain 

isoforms was determined by counting all visible fibers. 

Hematoxylin & Eosin stain 

 Muscle sections were air dried for 10 minutes and incubated in Harris 

hematoxylin for 5 minutes followed by rinsing in running tap water for 5 minutes. 

Sections were then briefly incubated in acid alcohol, running tap water, ammonia water, 

and then running tap water for 10 minutes. The sections were subsequently incubated in 

eosin for 4 minutes, dehydrated in alcohols, cleared, and mounted in permount. Images 

were obtained at 10X magnification using a Zeiss AxioImager microscope and associated 

camera and software. The total number of fibers in the mid-belly of the muscle was 

manually calculated using the cell counter plug-in in ImageJ (197). Single fiber cross-

sectional area was calculated in 100 randomly selected fibers using ImageJ and plotted as 

a histogram to examine the distribution (197). 
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Myosin heavy chain electrophoresis 

 Soleus muscles were homogenized using a micro-tube pestle (Research Products 

International Corporation) in buffer (w/v 1:20) containing v/v 10% SDS, 40 mM DTT, 5 

mM EDTA, 0.1 M Tris-HCL, and protease inhibitor (Sigma) (198). Homogenates were 

boiled in water for 5 minutes to denature the samples and the protein concentration of the 

soluble homogenate was determined using the RC DC Protein Assay (Bio-Rad 

Laboratories). The samples were then diluted in Laemmli sample buffer (Bio-Rad 

Laboratories) to yield a final protein concentration of 0.4 µg/µl. 6 µg of sample were 

loaded per lane of the gel.  

 SDS-PAGE was performed according to procedures outlined by Talmadge and 

Roy with minor modifications (199). The percent of glycerol in the stacking and 

separating gel was increased from 30% to 35%. The acrylamide:N,N’-

methylenebisacrylamide ratio was 37.5:1 for the stacking gel and 99:1 for the separating 

gel. All gels were 0.75 mm thick, contained 10 wells and were used within 24 hrs after 

they were made. The Mini-PROTEAN 3 Cell and PowerPac Basic Power Supply (Bio-

Rad Laboratories) were used for electrophoresis. The running buffers were made from a 

10X stock solution (Bio-Rad Laboratories). The upper running buffer contained 50 mM 

Tris, 384 mM glycine, and (w/v) 0.1% SDS (pH = 8.3). The lower running buffer 

contained 25 mM Tris, 384 mM glycine, and (w/v) 0.1% SDS (pH = 8.3). The volume of 

the upper running buffer was 150 ml and 500 ml for the lower running buffer. ß-

mercaptoethanol was added to the upper running buffer to give a final v/v of 0.12% 

(200). The buffers were made fresh before each run, stirred for 10 minutes, and then 

cooled to 4C before electrophoresis. The buffers were not stirred during electrophoresis. 
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Two gels were used for each run at a constant 7 mA for 24 hrs at 4C. Following 

electrophoresis the gels were stained with a Coomassie G250 (Bio-Rad Laboratories), 

scanned, and the bands were quantified using the gel analyzer feature in ImageJ (197).   

RNA isolation and microarray hybridization 

 The isolation of RNA, microarray hybridization, and initial data processing were 

performed at the State University of New York Upstate Medical University microarray 

core facility. Muscle tissue was disrupted by passage through a 22G needle and 

homogenized with a QIAshredder column (Qiagen Inc., Valencia, CA). RNA was 

extracted with the RNeasy Mini Kit (Qiagen Inc.). Quality and quantification of RNA 

was performed using the Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Santa 

Clara, CA). For microarray processing, 9 ng of total RNA was used for each sample. The 

samples were processed with the WT-Ovation Pico RNA Amplification System (NuGEN 

Technologies Inc.) to produce cDNA. The cDNA was then processed with the WT-

Ovation Exon Module (NuGEN Technologies Inc.) to produce cDNA of the appropriate 

strand for the Gene ST arrays. The cDNA was then fragmented and biotin labeled using 

the FL-Ovation cDNA Biotin Module V2 (NuGEN Technologies Inc., San Carlos, CA). 

A hybridization mix (5 g of the labeled cDNA, 50 pM Control Oligo B2, 1X Eukaryotic 

Hybridization Controls, 1X hybridization buffer and 10% DMSO) was prepared using 

Affymetrix GeneChip Expression Hybridization Controls and the Affymetrix GeneChip 

Hybridization Wash and Stain Kit (Affymetrix Inc., Santa Clara, CA). The hybridization 

mix was incubated at 99C for 2 minutes, then 45C for 5 minutes, and each sample was 

added to a GeneChip Mouse Gene 1.0 ST array (Affymetrix Inc.). This array contains an 

estimated 28,853 genes. Arrays were incubated for 18 hrs in a GeneChip Hybridization 
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Oven 640 at 45C with rotation at 60 rpm (Affymetrix Inc.). After 18 hrs, the arrays were 

washed and stained on the Affymetrix Fluidic Station 450. Arrays were scanned with an 

Affymetrix GeneChip Scanner 7G Plus.  

Microarray gene expression data analysis 

 For between-group comparison of the gene expression data, the significance 

analysis of microarrays (SAM) method (two-class, unpaired) was used using the 

MultiExperiment Viewer in the TM4 suite of software tools (201, 202). An initial SAM 

analysis was performed with 1000 permutations to view the SAM plot. The plot is 

interactive and allows the user to select the delta value and examine the effect on the 

number of genes called significant, but also the false positive rate. After viewing the test 

statistic distribution (i.e., observed versus the expected d-value) a delta (=1.626) was 

selected that strictly controlled type I error that greatly limited the number of genes called 

significant by chance alone. We then performed two additional SAM analyses with 1000 

permutations each using the delta established from the initial analysis. The final list of 

differentially expressed genes was comprised of those that appeared in all three SAM 

analyses. We performed this process because the test statistic distribution is different 

each time the analysis is performed, which provides a slightly different list of genes 

called significant. For our set of analyses there were 16 genes called significant in at least 

one but not all three analyses. The final gene list contained 161 genes with a false 

discovery rate of 0.84%. The false discovery rate is defined as the median number of 

falsely called genes divided by the number of genes called significant. Based on the false 

discovery rate and the number of genes in our list there are 1.3 false positive genes. 

Given our false discovery rate is far below what is considered acceptable (< 5%), we feel 
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this gives us a high degree of confidence that type I error was adequately controlled. 

Functional categorization was performed using the National Center for Biotechnology 

Information and Gene Ontology databases (203). 

Microarray pathway analysis 

 The gene expression data analysis explained above was performed using strict 

criteria to generate a small list of genes with a high degree of confidence. However more 

subtle differences may have important consequences, particularly if several genes 

involved in the same pathway are affected. Thus, pathway analysis was performed using 

the Database for Annotation, Visualization and Integrated Discovery (DAVID) (204). 

DAVID systematically maps large gene lists against associated biological annotations 

from a number of sources, including the Gene Ontology, BioCarta, KEGG, etc. The gene 

list for DAVID pathway analysis was generated by constructing 95% confidence 

intervals of the fold change of all genes on the array. Genes outside of the 95% 

confidence intervals were considered genes that are the most differentially expressed (i.e., 

most interesting). An additional criteria was also applied to this list of genes, the final list 

of genes included those with a p<0.01 using an unpaired t-test. This gene list, which 

included 803 genes, was imported into DAVID to perform functional annotation 

clustering. The premise of this analysis is that similar terms are clustered into groups, 

which can be used to explore their relationship in a network format rather than examining 

singular terms (204). Clusters with an enrichment score of 1.3 were considered because 

they are biologically relevant (204). Terms associated with each cluster were considered 

if they reached statistical significance (p<0.05) with a false discovery rate of <5%.  



www.manaraa.com

61 

 

 MicroRNA (miRNA) pathway analysis was also conducted. miRNAs are small 

non-coding RNAs involved in post-transcriptional regulation of gene expression (205). 

MicroRNAs play a fundamental role in skeletal muscle biology, and their dysregulation 

has been demonstrated in various disease conditions (205, 206). A number of miRNA 

were represented in the gene expression and pathway analysis gene lists. To gain novel 

insight into the regulatory pathways regulated by miRNA in skeletal muscle from 

Ts65Dn mice, we used a bioinformatics tool to identify potential miRNA-mRNA-protein 

interactions. Differentially expressed miRNA were uploaded into the DIANA-mirPATH, 

which is a computational tool to identify molecular pathways regulated by miRNA 

expression (207). A list of miRNA target genes was identified by TargetScan 5 (208), 

followed by calculation of an enrichment analysis using Pearson’s Chi-squared test to 

determine which KEGG pathways were associated with the list of target genes (209). 

Pathways were considered significant if -ln(p-value) < 3 (i.e., p < 0.05). 

Quantitative real-time PCR 

 Microarray data were validated by quantitative real-time PCR from the same 

RNA used for microarray analysis. RNA reverse transcription was performed using the 

iScript cDNA synthesis kit (Bio-Rad Laboratories) according to the manufacturer’s 

recommendation. PCR was performed using iQ Supermix (Bio-Rad Laboratories) and the 

iCycler iQ Real-Time PCR Detection System (Bio-Rad Laboratories) using 

recommended cycling parameters. Pre-designed Taqman primers and probes were 

purchased from Applied Biosystems (ABI, Foster City, CA), which are designed to have 

100% amplification efficiency. The standard curve method was used to quantify the 
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expression of SOD1, amyloid precursor protein (App), ring finger protein 160 (Rnf160), 

and GAPDH, which was included to normalize gene expression data.  

Isolation and culture of single skeletal muscle fibers 

 Single skeletal muscle fibers were isolated from the FDB according to the method 

of Shefer and Yablonka-Reuveni with minor modifications (210). FDB muscles were 

excised and placed in sterile conical tubes containing Dulbecco’s modified eagle medium 

(DMEM) with L-glutamine and sodium pyruvate (MediaTech Inc., Manassas, VA), 0.4% 

(w/v) collagenase type I (Worthington Biomedical Corporation, Lakewood, NJ), and 25 

M HEPES, which was incubated for 3 hrs at 37C. The tube was gently agitated every 

30 minutes to facilitate digestion. Following digestion, the muscles were washed twice in 

2 ml of isolation media, which contained DMEM, 10% horse serum (Thermo Scientific 

Inc., Rockford, IL), 100 U/ml penicillin, and 100 g/ml streptomycin (Thermo Scientific 

Inc.). The muscles were then placed in individual 35 mm dishes containing 3 ml of 

isolation media where debris and connective tissue were removed before gently triturated 

the muscles with fire-polished Pasteur pipette with openings ranging in diameter from < 1 

to 3 mm. As the muscle progressively became smaller with increasing loss of fibers, the 

muscles were moved to another 35 mm dish containing 3 ml of isolation media and 

triturated with progressively narrower diameter Pasteur pipettes. This process continued 

until a sufficient number of fibers had been released. Single fibers were separated from 

debris and tangled or broken fibers by gravity sedimentation through 4 columns of 

isolation media for 10-15 minutes. The fibers were then bathed in maintenance medium 

containing DMEM, 10% fetal bovine serum (Thermo Scientific Inc.), 100 U/ml penicillin 

and 100 g/ml streptomycin. Fibers were then plated on Matrigel (BD Biosciences, MD) 
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coated 35 mm dishes. The plates were placed in an incubator with 5% CO2 at 37C for 30 

minutes to allow the fibers to adhere to the matrix, after which additional maintenance 

medium was added. Cultures were maintained in 5% CO2 at 37C for at least 12 hrs 

before they were used for experiments. 

Oxidant production measurements from single fibers 

 Prior to the measurement of oxidant production, culture dishes were removed 

from the incubator and the medium was replaced with Dulbecco’s phosphate buffered 

saline (D-PBS) for 5 minutes. The D-PBS was removed and replaced with D-PBS 

containing 20 M 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA; Invitrogen) in 

ethanol, and incubated in the dark for 45 minutes at room temperature. H2DCFDA 

diffuses into fibers where intracellular esterases remove the diacetate group leaving 

H2DCF, which is retained by the cell. Oxidants react with H2DCF to yield fluorescent 

DCF. Following the incubation period the fibers were washed twice with D-PBS and 

incubated for an additional 20 minutes in D-PBS at room temperature before imaging.  

 Cells were imaged using a Nikon TE2000E inverted microscope (Nikon 

Instruments, Inc., Melville, NY) with 10X objectives and the B-2E filter set with 

excitation and emission wavelengths of 450-490 and 520-560 nm, respectively. Images 

were acquired using the microscope camera, which was controlled by NIS-Elements free 

software. DCF fluorescence was measured at time 0 and 15 minutes. Exposure time was 

limited to 2 seconds to avoid excessive photo-oxidation. Following the last measurement 

the shutter was opened and the fiber was continuously exposed with light to confirm that 

the acquired images were not saturated. Image analysis was performed using ImageJ 

software (197). The gray value of the entire fiber was measured at 0 and 15 minutes. The 
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gray value of a small area away from the fiber was also measured for background 

correction. The gray value of the background was subtracted from the gray value of the 

fiber at each time point. The background-corrected gray value at 15 minutes was 

expressed relative to the initial value (187). 

 The viability of each fiber was assessed following the experiment in three ways: 

1) morphology, 2) exclusion of trypan blue, and 3) contractility. The morphology of the 

fibers was closely inspected for the presence of organized striations and absence of 

severe bending or twisting. Membrane damage was assessed using a solution of PBS 

containing 0.4% trypan blue. This solution was added to the culture dish and the fiber 

was visualized to ensure that the fiber excluded the dye (211). Maintenance of 

contractility was confirmed by stimulating the fiber using platinum electrodes with trains 

(2 ms pulse, 500 ms train duration, 50 Hz, 30 V, repeated once every 5 s) following the 

protocol (187). The fiber was considered viable only if it met the above criteria. 

Immunofluorescence of single fibers 

 Single skeletal muscle fibers were assessed for protein content of SOD1. 

Following the measurement of oxidant production the fibers were fixed in 2% 

formaldehyde in PBS at room temperature for 15 minutes, and stored at 4C with PBS 

until staining. The fibers were permeabilized with 0.2% Triton X-100 in PBS for 20 

minutes and then blocked with a solution containing 10% normal goat serum and 1% 

bovine serum albumin for 30 minutes. The SOD1 primary antibody (1:100, cat# T2767, 

BioVision, Inc., Mountainview, CA) was applied and incubated in a dark humid chamber 

at 4C for 24 hrs. Fibers were washed with PBS for three five-minute periods following 

the primary antibody incubation period. The fibers were subsequently incubated with a 
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Texas Red-labeled goat anti-rabbit secondary antibody (cat# T2767, Invitrogen) for 1 hr 

at room temperature, followed by three fifteen-minute washes in PBS. The fibers were 

then mounted in Vectashield with DAPI (Vector Laboratories, Burlingame, CA) and 

viewed with microscopy. Fibers were imaged using a fluorescence Nikon TE2000E 

inverted microscope with 10X objectives and the Y-2E/C filter set with excitation and 

emission wavelengths of 540-580 and 600-660, respectively. Images were acquired using 

the microscope camera controlled by NIS-Elements free software. Exposure time was 

limited to 2 seconds to avoid excessive photo-oxidation. Image analysis was performed 

using ImageJ software (197). 

Single fiber analyses 

 Fiber size and myonuclei number were determined for Ts65Dn and WT FDB 

fibers. Fiber length and diameter were calculated using an image of the unfixed fibers 

because this avoids the shrinking that occurs following fixation. Fiber diameter was 

measured at three different locations and the average value was calculated. Myonuclei 

were stained with DAPI as detailed above. The total number of nuclei from each fiber 

was calculated using the cell counter plug-in in ImageJ (197). Myonuclear domain was 

calculated by dividing fiber volume (fiber length   r
2
) by the total number of nuclei 

(119). 

Statistical Analyses 

 The Shapiro-Wilk test for normality was used to test whether the data were 

normally distributed for parametric statistical analysis. If data violated the assumption of 

normality, a Box-Cox transformation was used so that the assumption of normality was 

met. All data were analyzed using independent sample t-tests and presented in the form 



www.manaraa.com

66 

 

mean  standard error (SEM) unless otherwise stated. Data is visually portrayed using 

box plots. The box plots depict the inter-quartile range and 10
th

 and 90
th

 percentiles with 

the mean represented by +. Pearson correlation coefficients were calculated to assess the 

direction and strength of association among selected variables. The alpha was set a priori 

at p < 0.05. Stata 10.1 and Prism 5 statistical package was used for data analysis. 
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Table 3. Summary of the measurements performed. 

 

Group Muscle Measure 

1 Left soleus In vitro contractile function 

  Myosin heavy chain composition 

 Right soleus Protein expression levels: 

  - Antioxidant 

  - Oxidative capacity 

  - Oxidative injury 

  Global gene expression 

 Gastronemius Hydrogen peroxide content 

2 Flexor Digitorum Brevis Oxidant production 

  SOD1 expression 

  Fiber morphology 

 Soleus Cross-sectional area 
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RESULTS 

Animal and soleus muscle mass characteristics 

 Age and body mass of animals utilized for these experiments are presented in 

Table 4. Age and body mass for the first group of animals was similar between groups 

(p=0.90 and p=0.28, respectively). For the second group of animals, age (p=0.55) was 

similar between groups but the Ts65Dn mice weighted significantly less than WT 

(p=0.02). 

 Soleus muscle characteristics are presented in Table 5. Soleus muscle mass and 

muscle mass: body weight ratios were similar between groups (p=0.97 and p=0.36, 

respectively). Optimal length and predicted cross-sectional area of soleus muscles 

utilized for contractile experiments were similar between groups (p=0.15 and p=0.81, 

respectively). The total number of fibers in the soleus muscles were also similar between 

groups (n=3/group; p=0.38). 

SOD1 over-expression was not associated with skeletal muscle oxidative stress under 

basal conditions 

 The over-expression of SOD1 has been strongly implicated as one of the possible 

causes of oxidative stress in DS (32, 193). SOD1 can lower superoxide radical levels by 

catalyzing its conversion to oxygen and hydrogen peroxide (31). Excess production of 

hydrogen peroxide, however, could potentially lead to reaction with transition metals 

producing damaging radicals if not fully compensated by the up-regulation of other key 

antioxidant enzymes, specifically CAT and GPX1. As anticipated, SOD1 protein 

expression was higher in Ts65Dn soleus by 25% (p=0.01), however CAT (p=0.53) and 
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GPX1 (p=0.55) protein expression were similar between groups (Figure 6). Furthermore, 

protein levels of SOD2 were also similar between groups (p=0.96; Figure 6). 

 Oxidative stress has been associated with an increase in the production of 

oxidants and increased markers of oxidative injury (41). We assessed two well-known 

markers of oxidative injury (4-HNE and protein carbonyls); protein carbonyls were 20% 

higher in Ts65Dn soleus (p=0.02; Figure 7), whereas 4-HNE was similar between groups 

(p=0.39; Figure 7). We next addressed whether Ts65Dn muscle exhibited a greater level 

of basal oxidant production. The hypothesis that Ts65Dn muscle would produce more 

oxidants was based on previous findings demonstrating increased oxidant production in 

non-muscle tissue from both persons with DS, and the Ts65Dn mouse (42, 56). Thus we 

chose to assess oxidant production in isolated, adult single skeletal muscle fibers from the 

FDB using the 2’,7’-dichlorodihydrofluorescein assay. The advantages of this technique 

are that oxidant production is measured in real-time and the measurement avoids the 

contribution from non-muscle cells. DCF emissions from single skeletal muscle fibers 

were similar between groups (p=0.38; Figure 8). Likewise, the assessment of hydrogen 

peroxide levels by Amplex Red in gastrocnemius homogenate was similar between 

groups (p=0.48; Figure 9).  

 The relationship between DCF emissions and SOD1 expression was assessed in 

single skeletal muscle fibers. Fibers were probed for SOD1 following the DCF 

experiment. As expected, SOD1 expression was higher in Ts65Dn fibers (186%; p=0.00; 

Figure 10). There was a significant inverse correlation between SOD1 expression and 

DCF emission in WT fibers (r=-0.72; p=0.01; Figure 11). However, this relationship did 

not exist in Ts65Dn fibers (r=0.18; p>0.05). 
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Ts65Dn soleus displays muscle weakness following fatiguing contractions 

 DS is associated with a number of phenotypic alterations that include hypotonia 

and low muscle strength, which directly and negatively impacts these individual’s ability 

to perform activities of daily living (6, 7, 14, 19, 20). Thus, we sought to determine 

whether the Ts65Dn mouse also exhibits evidence of muscle dysfunction. Twitch and 

tetanus soleus contractile properties are presented in Table 6 and were similar between 

groups. The force frequency response is presented in Figure 12. The area under the curve 

for absolute force (p=0.58), relative force (% of Po) (p=0.45), and stress (p=0.71) were 

similar between groups.   

 The response of the soleus muscle to repeated activation and recovery is presented 

in Figure 13. Fatigue progressively developed in the muscles as evidenced by the 

progressive drop in the active force generated during the stimulation protocol. The resting 

force of the muscles gradually increased for both groups, indicating the inability of the 

muscles to fully relax during the protocol. No difference in the area under the curve for 

the absolute force (p=0.70), resting absolute force (p=0.49), and percent of initial stress 

(p=0.58) was observed between groups. Following the fatigue protocol, the muscles 

gradually recovered as indicated by the increase in the active force, as well as gradual 

decrease in the resting force. The area under the curve for absolute force was similar 

between groups (p=0.49), but the area under the curve for resting absolute force was 

higher in Ts65Dn than WT soleus muscles (p=0.02). Moreover, the area under the curve 

for the percent of initial stress was significantly greater for the WT compared to Ts65Dn 

soleus muscles (p=0.04). These findings indicate that the Ts65Dn soleus muscles show 
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an impaired recovery response following a bout of fatiguing muscle contractions 

compared to WT mice.  

Soleus myosin heavy chain composition does not explain post-fatigue weakness 

 Myosin heavy chain content is known to have a significant impact on skeletal 

muscle function (212). Thus, the composition of myosin heavy chain in the soleus was 

assessed by immunofluorescence and further confirmed by electrophoresis. We were 

unable to clearly and consistently separate the Type IIa and Type IIx myosin heavy chain 

isoforms with the electrophoresis technique, thus we provide a composite percentage for 

Type IIa/x. Myosin heavy chain composition was similar between groups (Figure 14).  

Decreased soleus fiber CSA in Ts65Dn mice 

 Single fiber cross-sectional area of soleus muscles was quantified from H&E 

stains in a different and older group of Ts65Dn mice than those used for the contractile 

experiments (group 2). Analysis of fiber area distribution revealed a leftward shift, 

indicating a tendency for Ts65Dn soleus to have smaller-sized fibers (Figure 15). Overall, 

the fibers from Ts65Dn were significantly smaller than WT (1761365 vs. 1939283 m, 

respectively; p=0.00) 

Decrease in myonuclear domain in Ts65Dn single fibers 

 Skeletal muscle cells are multi-nucleated and each nuclei is transcriptionally 

active for a certain amount of cytoplasmic volume, which is referred to as myonuclear 

domain (213). Changes in myonuclear domain can occur due to loss of myonuclei or 

fiber atrophy. FDB fiber diameter, length, volume, and number of myonuclei are 

presented in Table 7. Fiber length (p=0.54), diameter (p=0.07), volume (p=0.08), and 
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number of myonuclei (0.31) were similar between groups. Myonuclear domain was 

significantly smaller in Ts65Dn FDB fibers compared to WT (p=0.04; Figure 16). 

Decreased cytochrome c expression in Ts65Dn muscle  

 We hypothesized that the development of post-fatigue weakness in Ts65Dn 

muscle could be attributable, at least in part, to a limitation in mitochondrial function. 

This postulate was based partly on previous findings that showed: 1) the presence of 

mitochondrial dysfunction in neural tissue derived from persons with DS (214); 2) 

reduced exercise tolerance in persons with DS and the Ts65Dn mouse (11, 51); and 3) 

lower values of basal, whole-body oxygen uptake recorded for Ts65Dn mice compared to 

WT controls (58). Thus, we determined the protein expression of cytochrome c oxidase 

subunit II (COX2) as an index of oxidative capacity. COX2 is one of three 

mitochondrial-encoded subunits with catalytic activity of respiratory complex IV, which 

is the terminal enzyme complex of the electron transport chain (215). The rationale for 

selecting COX2 as a marker of oxidative capacity is based on two principal findings: 1) 

COX2 protein expression responds to changes in training status and aerobic capacity; and 

2) protein expression of COX2 are directly correlated with its enzymatic activity (216). 

We found that soleus of Ts65Dn mice displayed a 22% decrease in cytochrome c oxidase 

expression (Figure 17). This is consistent with the hypothesis that some degree of 

mitochondrial impairment may contribute to the post-fatigue muscle weakness.  

Microarray Analyses and Interpretation  

Effects of trisomy on skeletal muscle gene expression 

 The Ts65Dn mouse is segmental trisomic for mouse chromosome 16 from 

ZNF295 to MRP139, which corresponds to roughly 132 out of the 230 of genes in the 
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human condition (144). There were a total of 94 out of the 132 trisomic genes on the 

array. At nominal p< 0.05, 51 genes were differentially expressed. Thirty-five genes were 

up-regulated with a mean fold change of 1.76 and 16 genes were down-regulated with a 

mean change of 1.33 (Table 8). 

Conservative gene-by-gene analysis 

 The global effects of trisomy on skeletal muscle gene expression were determined 

using microarray analysis. Based on the criteria we designed to greatly minimize type I 

error, a final gene list was generated using SAM analysis that contained 159 genes. Of 

these genes, 106 were down-regulated with a mean fold change of 1.6 (range 1.35 to 

1.85), and 53 were up-regulated with a mean fold change of 2.1 (range 1.41 to 4.58). 

Functional categorization of these genes was performed using the National Center for 

Biotechnology Information and Gene Ontology databases (203). Ninety-seven of these 

genes had a known function and are presented along with their annotation and fold 

change in Table 9. The genes with no known function are provided in Table 10. The 

analysis identified genes with roles in metabolism, neuromuscular transmission, 

inflammation, muscle differentiation, proteolysis and damage stimulus, skeletal muscle 

structure and function, and iron metabolism, which are discussed in detail below. A 

summary of these changes and their effects on Ts65Dn soleus is provided in Table 11. 

 Microarray results were validated using quantitative real-time PCR for 4 genes 

(SOD1, Rnf160, App, and GAPDH used as the normalizer). Overall, results of the PCR 

were consistent with the microarray. In agreement with the array, GAPDH was similar 

between groups (p=0.27). Fold change of SOD1 for Ts65Dn relative to WT was +1.1 and 

+1.3 for microarray and PCR (p>0.05 for both), respectively. Fold change for App in 
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Ts65Dn relative to WT was +2.4 and +2.5 by microarray and PCR (p<0.05 for both), 

respectively. Fold change for Rnf160 in Ts65Dn relative to WT was +3.7 and +2.2 for 

microarray and PCR (p<0.05 for both), respectively. These results provide evidence that 

the microarray data accurately reflect the gene expression changes in Ts65Dn soleus. 

Genes with a role in metabolism 

 The microarray analysis identified seven genes with putative roles in glucose and 

lipid metabolism. There were four genes with a possible role in glucose uptake and/or 

metabolism by skeletal muscle cells, which included MLX interacting protein (Mlxip), 

trans-acting transcription factor 5 (Sp5), adrenergic receptor alpha 1a (Adra1a), and 

TBC1 domain family member 1 (Tbc1d1). Mlxip and Tbc1d1 were up-regulated, 

whereas Adra1a and Sp5 were down-regulated in Ts65Dn soleus. The analysis identified 

a major regulator of lipid metabolism in skeletal muscle known as sterol regulatory 

element binding transcription factor 1 (Srebf1), which was down-regulated in Ts65Dn 

soleus. There were two genes that have putative effects on lipid metabolism, and include 

tankyrase TRF1-interacting ankyrin-related ADP-ribose polymerase (Tnks) and melanin-

concentrating hormone receptor 1 (Mchr1). Tnks was up-regulated, whereas Mchr1 was 

down-regulated in Ts65Dn soleus. 

 Mlxip (
1
) is a member of the basic helix-loop-helix leucine zipper family of 

transcription factors. The gene has been shown to function as a metabolic sensor in 

C2C12 skeletal muscle cells by monitoring the level of intracellular glucose-6-phosphate. 

High levels of glucose-6-phosphate cause Mlxip to shuttle from the mitochondria to the 

nucleus where it is a transcription factor activator of glycolytic genes, including lactate 

dehydrogenase A, hexokinase II, and 6-phosphofructo-2-kinase/fructose-2,6-

                                                 
1
 The arrow signifies whether each gene is up- or down-regulated. 
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biphosphatase 3 (217). Sp5 () is a transcription factor of the Sp and is a transcriptional 

repressor of Sp1 activity (218). Increased cytochrome c expression in C2C12 muscle 

cells following contractile activity has been shown to be mediated in part by Sp1 (219). 

Therefore, if Sp5 acted as a transcriptional repressor of Sp1 in skeletal muscle, its 

reduced expression could lessen Sp5 repression on Sp1 transcriptional activity leading to 

transcription of Sp1 target genes. However, there is no known role of Sp5 in skeletal 

muscle. 

  Mlxip, Adra1a, and Tbc1d1 have putative roles in skeletal muscle glucose uptake. 

Mlxip () is  a negative regulator of glucose uptake through its regulation of 

thioredoxin-interacting protein (220). Adra1a () belongs to the G-protein-linked family 

of receptors. Stimulation of Adra1a by receptor agonist or insulin increases glucose 

uptake in L6 muscle cells (221). Finally, Tbc1d1 () is known as a major player in both 

insulin- and contraction-induced GLUT4 trafficking in skeletal muscle (222). 

Phosphorylation of Tbc1d1 by Akt leads to an increased binding of 14-3-3 proteins to 

Tbc1d1, which enhances the activity of Rab-GTPase-activating proteins. The more active 

form of Rab-GTPase-activating proteins allows GLUT4 translocation to the cell 

membrane. Collectively, the genes identified indicate an effect on glucose metabolism 

and trafficking in Ts65Dn soleus.  

 Srebf1 () is a DNA binding protein that plays a major role in both cholesterol 

and fatty acid metabolism in liver and adipose tissue (223). The gene may have a similar 

role in skeletal muscle as a regulator of lipogenesis and triglyceride storage (224). Tnks 

() may have an effect on skeletal muscle lipid metabolism. For example, transgenic 

mice deficient in Tnks are lean, hyperphagic, and hypermetabolic. In addition, these mice 
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exhibit an increased gene expression of genes involved in -oxidation in their skeletal 

muscle (225). Collectively, the effect of Srebf1 and Tnks could mean suppressed fat 

production, storage, and metabolism in Ts65Dn soleus.  

The role of Mchr1 () in skeletal muscle metabolism is not known, however it 

does have systemic effects on metabolism. Mchr1 is the receptor for melanin-

concentrating hormone. Chronic infusion or transgenic over-expression of melanin-

concentrating hormone stimulates feeding and increases adiposity, whereas deletion of 

melanin-concentrating hormone or Mchr1 leads to leanness and increased energy 

expenditure (226, 227).  

Genes with a role in neuromuscular transmission 

 The microarray analysis identified four genes involved in neuromuscular 

transmission, which included solute carrier family 18 (vesicular monoamine) member 3 

(Slc18a3), intersectin 1 (SH3 domain protein 1A) (Itsn1), amyloid precursor protein 

(App), and syntaphilin (Snph). Itsn1 and App were up-regulated in Ts65Dn soleus, 

whereas Slc18a3 and Snph were down-regulated. Slc18a3 () is a mediator of 

acetylcholine transport into synaptic vesicles of presynaptic motor neurons. Synaptic 

vesicles are replenished through the process of endocytosis, and formed vesicles are 

refilled with acetylcholine through a process that depends on Slc18a3 (228). Another 

gene involved in the cycling of synaptic vesicles is Istn1 (). The gene plays an 

important role in cycling of synaptic vesicles in neurotransmitter release, possibly by 

regulating the interaction with the actin cytoskeleton (229).  

 App () is one of the well-known genes shown to be over-expressed in persons 

with DS, as well as the Ts65Dn mouse, and is often associated with ß-amyloid plaques in 
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the brain (230, 231). Its role in skeletal muscle is less clear, but is suggested to be a 

regulator of neuromuscular morphology and physiology (232). For example, transgenic 

mice lacking App and App-like protein 2 exhibit alterations of pre- and post-synaptic 

morphology and defective neurotransmitter release. Conversely, App accumulation (over-

expression) inhibits innervations in cultured human muscle and transgenic mice over-

expressing App display impaired Ca
2+

 release and contractility (233, 234). The analysis 

identified two additional genes, N-terminal EF-hand calcium binding protein 3 (Necab3) 

and transthyretin (Ttr), which are involved in App metabolism. Necab3 and Ttr were both 

down-regulated in Ts65Dn soleus. Necab3 () inhibits the association of X11L with 

amyloid precursor protein (235). X11L suppresses the production of -amyloid peptides 

from amyloid precursor protein by associating with its cytoplasmic domain. Ttr () is a 

transporter of thyroxine and retinol-binding protein. It is also commonly found in 

amyloid deposits where it is thought to have anti-amyloidogenic effects (236, 237). 

 Snph () has been shown to play a crucial role in synaptic function by controlling 

mitochondria mobility in axons. Nerve terminals have high-energy demands and require a 

large supply of ATP to control Ca
2+

 levels. Snph regulates mitochondria density in axons 

by acting as a receptor for docking/anchoring mitochondria in the synaptic knob (238).   

Genes with a role in inflammation 

 The microarray analysis identified three genes involved in inflammation, which 

included, CD276 antigen precursor (Cd276), tumor necrosis factor alpha-induced protein 

8-like 2 (Tnfaip8l2), and complement component 3a receptor 1 (C3ar1). Cd276 and 

Tnfaip8l2 were down-regulated, whereas C3ar1 was up-regulated in Ts65Dn soleus. 

Cd276 () and Tnfaip812 () are negative regulators of immune function. Cd276 is 
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undetectable in normal muscle fibers but is up-regulated in patients with inflammatory 

myopathies where it serves to blunt CD8+ T cell-specific lysis (239). While the role of 

Tnfaip8l2 in skeletal muscle is unclear, it does display detectable levels of expression in 

skeletal muscle (240). The gene is proposed to be a negative regulator of immune 

function by inhibiting activation of activating protein-1 and nuclear factor-B (241). 

Lastly, C3ar1 () is an important receptor in triggering the immune response. Up-

regulation of this receptor in skeletal muscle occurs by inducing insulin resistance 

through high fat feeding (242). 

Genes with a role in muscle differentiation/regeneration 

 The microarray analysis identified six genes involved in muscle 

differentiation/regeneration, which included netrin 3 (Ntn3), RB1-inducible coiled-coil 1 

(Rb1cc1), kinase insert domain protein receptor (Kdr), nephrosis 1 homology nephrin 

(human) (Nphs1), numb gene homology (Drosophila) (Numb), and avian 

reticuloendotheliosis viral oncogene related B (RelB). Ntn3, Rb1cc1, Nphs1, and RelB 

were down-regulated, whereas Kdr and Numb was up-regulated in Ts65Dn soleus.  

Five of these genes play a role in the formation of myotubes during muscle cell 

differentiation. Ntn3 () is a member of the netrin family of proteins that associate with 

cell membranes and the extracellular matrix (243). Recombinant Ntn3 stimulates the 

formation of myotubes during C2C12 muscle cell differentiation. Rbc1cc () is also a 

determinate of differentiation in C2C12 muscle cells, as interference RNA mediated 

knockdown of Rbc1cc blocks differentiation of C2C12 myoblasts (244). Nphs1 () is a 

well-known renal protein involved in the maintenance of the kidney filtration barrier; 

however, it was recently shown that Nphs1 is necessary for myoblast fusion during 
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differentiation (245). RelB () is one of five gene members of the NF-B family, which 

is a component of alternative NF- B signaling (246). The alternative NF-B pathway 

may be involved in skeletal myogenesis and regeneration (246). This pathway is 

dispensable during myotube formation, but is induced in the later stages of differentiation 

where it functions to promote mitochondrial biogenesis (246). Numb () is a negative 

regulator of Notch signaling in skeletal muscle that plays an important role in skeletal 

muscle development and regeneration (247). Cessation of Notch activity is correlated 

with differentiation of cultured myoblasts. Collectively, these genes participate in muscle 

differentiation but a direct role of these genes in muscle regeneration has yet to be 

defined. One identified gene that may play a direct role in muscle regeneration is Kdr 

(), which is a receptor for vascular endothelial growth factor (VEGF); an important 

gene involved in angiogenesis. VEGF and it receptors Kdr and Flt-1 are expressed in 

regenerating skeletal muscle fibers following ischemia-, chemically-induced or freeze-

induced muscle damage (248).  

Genes with a role in proteolysis and damage stimulus 

 The microarray analysis identified nine genes involved in proteolysis and 

response to cellular damage, which included ring finger protein 160 (Rnf160), ariadne 

homolog 2 (Arih2), serine/threonine kinase 4 (Stk4), replication protein A2 (Rpa2), rap1 

interacting factor 1 homology (yeast) (Rif1), NIMA (never in mitosis gene a)-related 

expressed kinase 1 (Nek1), ectonucleotide pyrophosphatase/phosphodiesterase 7 

(Enpp7),  fos-like antigen 1 (Fosl1), and transmembrane BAX inhibitor motif containing 

6 (Tmbim6). Rnf160, Stk4, Rpa2, Rif1, Nek1, and Tmbim6 were up-regulated, whereas 

Arih2, Enpp7, and Fosl1 were down-regulated in Ts65Dn soleus. 
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Rnf160 () and Arih2 () are E3 ubiquitin ligases that label proteins with 

ubiquitin, which targets them for degradation by the proteasome (249, 250). Stk4 () is a 

regulator of neuronal cell death. Stk4 mediates oxidative stress induced neuronal cell 

death by phosphorylating the transcription factor FOXO1 (251). In skeletal muscle 

FOXO1 can directly up-regulate muscle-specific ubiquitin ligases which leads to muscle 

atrophy (252). 

 Rpa2 (), Rif1 (), and Nek1 () are involved in the response to DNA damage. 

Rpa2 is involved in the response to DNA damage stimulus and repair (253). Rif1 is also 

involved in the DNA damage stimulus where it associates with stalled replication forks 

(254). Nek1 is required for DNA damage checkpoint control and repair (255). In 

addition, Nek1 has a novel role in apoptosis. Nek1 regulates cell death by closing the 

voltage dependent anion channel 1, which prevents pre-apoptotic factors from entering 

the cytoplasm and mediating apoptotic pathways (256). 

 Enpp7 (), Fosl1 (), and Tmbim6 () play a role in oxidant production and the 

response to oxidative stress. Enpp7 has a number of functions in the human digestive 

system, which includes hydrolyzing sphingomyelin to generate ceramides (257). It has 

been shown recently that the production of ceramides in skeletal muscle increases oxidant 

production in muscle cells, depresses specific force of unfatigued muscle, and accelerates 

the fatigue process (258). If Enpp7 has the same function in skeletal muscle, the decrease 

in transcript levels and protein expression may lead to a decrease in the processing of 

sphingomyelin to ceramide, which could lessen the oxidant load on the muscle cell. Fosl1 

is a DNA binding protein that acts as an antagonist to NF-E2-related nuclear factor 

signaling (Nrf1 and Nrf2). Nrf1 and Nrf2 bind to the antioxidant response element (ARE) 
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and mediate the induction of antioxidant enzymes, while Fosl1 binds to ARE and 

negatively relates ARE-mediated gene expression (259). Lastly, Tmbim6 is an anti-

apoptotic protein located in the endoplasmic reticulum membrane. Tmbim6 is thought to 

protect cells from endoplasmic reticulum induced oxidative stress by effecting the 

regulation of heme oxygenase-1 (260) 

Genes with a role in skeletal muscle structure and function 

 The microarray analysis identified nine genes involved in skeletal muscle 

structure and function, which included tropomodulin 1 (Tmod1), phosphoglucomutase 5 

(Pgm5), moesin (Msn), laminin gamma 1 (Lamc1), myosin light polypeptide 6B 

(Myl6b), leprecan-like 1 (Leprel1), secretogranin V (Scg5), annexin A6 (Anxa6), and 

tescalcin (Tesc). Tmod1, Pgm5, Lamc1, Myl6b, Anxa6, and Msn were up-regulated, 

whereas Tesc, Leprel1, and Scg5 were down-regulated in Ts65Dn soleus.  

Tmod1 () is one of four isoforms of tropomodulins that function as capping 

proteins that modulate thin filament length by controlling actin dynamics at pointed ends. 

It has been shown using transgenic mice that ablation of Tmod1 results in depressed 

isometric stress production during muscle contraction and a shift to a faster fiber type 

distribution (261). Anxa6 () has a variety of functions in muscle. For example, in 

cardiomyocytes, Anxa6 is an important regulator of Ca
2+

 flux (262, 263). Transgenic 

mice over-expressing Anxa6 have lower basal levels of intracellular free Ca
2+

 and a 

reduced rise in Ca
2+

 following depolarization, whereas Anxa6 knockout increases 

shortening velocity and rate of contraction and relaxation in isolated cardiomyocytes 

(262). Thus, Anxa6 plays an important role in normal Ca
2+

 homeostasis by effecting 

membrane ion exchange. Another gene that may affect Ca
2+

 homeostasis is Scg5 (), 
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which facilitates the transport and activation of Pkd2. Pkd2 has a role in heart muscle 

physiology as a negative regulator of ryanodine-sensitive calcium-release. Pkd2 co-

immunoprecipitates with the cardiac ryanodine receptor and inhibits its activity in the 

presence of calcium (264). Tesc () is a newly identified gene that inhibits the activity of 

the Na
+
/H

+
 exchanger, which plays a crucial role in muscle pH homeostasis (265, 266).  

 Pgm5 () is structurally associated with dystrophin and utrophin at the muscle 

plasmalemma (267). While its functions are unknown, Pgm5 has been suggested to 

exhibit a structural, rather an enzymatic role in skeletal muscle. Msn () is part of the 

ERM family and consists of three closely related proteins, erzin, radixin, and Msn. These 

proteins play a role in organizing membrane domains through their ability to interact with 

transmembrane proteins and the cytoskeleton (268). In skeletal muscle, these proteins are 

putatively associated with talin but their functional role in skeletal muscle is unclear. 

Leprel1 () is a gene of the Leprecan family of proteoglycans that is expressed in 

skeletal muscle (269). Leprel1 is responsible for hydroxylation of collagen IV (270), 

which is a major component of the basement membrane in skeletal muscle (271). Lamc1 

() is one of three subunits that comprise laminin 111. Laminin 111 is expressed during 

embryonic development in human and mice skeletal muscle but not during adulthood. It 

was shown that injection of laminin-111 protein into the Mdx mouse model of Duchenne 

muscular dystrophy increased expression of alpha7-integrin which improves muscular 

pathology in the Mdx mouse (272). Myl6b () has a role in smooth muscle contraction, 

but its role in skeletal muscle physiology is unknown. 
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Gene with a role in iron metabolism 

 Transmembrane serine protease 6 (Tmprss6) which was down-regulated in 

Ts65Dn soleus is a suppressor of hepcidin, which is a key component of systemic iron 

metabolism (273). Hepcidin is a circulating peptide hormone that regulates the entry of 

iron into plasma, however its role in skeletal muscle is not fully elucidated (274). 

Ferroportin, which is an iron exporter, can be bound by hepcidin causing its degradation. 

Reduced expression of Tmprss6 could facilitate ferroportins degradation via 

unsuppressed hepcidin leading to increased cytosolic iron (274). 

Pathway analysis 

 The results presented above were based on stringent criteria to greatly limit type I 

error, however, more subtle differences in gene expression may have important effects, 

particularly if multiple genes for one pathway are affected. To this end, we performed 

pathway analysis using DAVID with an expanded list of the most differentially expressed 

genes (204). This list included a total of 803 genes, 68 of which were down-regulated and 

735 were up-regulated. Seven hundred and forty-five of the 803 genes were identified by 

the DAVID database and were used to perform functional annotation clustering to 

identify over-represented pathways. Results of this analysis are presented in Table 12 and 

a brief summary of relevant pathways follows below. 

 Twenty-eight clusters were formed with enrichment scores ranging from 1.4 to 

6.5. Cluster 1 with an enrichment score of 6.5 shows the most prominently affected 

pathways were those involved in proteolysis. The second most affected pathways 

represented in clusters 2, 3, 5, 9, and 16 included genes that interact or comprise the 

cytoskeleton. Cluster 4 included a number of terms that included processes involved in 
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nucleotide binding and kinase activity. Cellular components not bound by a lipid bi-layer, 

which include ribosomes, the cytoskeleton, and chromosomes, were represented in 

cluster 5. Cluster 7 was comprised of genes associated with nuclear content other than the 

chromosome or nucleolus, and cluster 18 comprised genes involved in structural 

constituents of the nuclear pore. Cluster 10 is comprised of annexins and associated 

genes. Annexins are a family of Ca
2+

- and phospholipid binding proteins, but have a 

variety of emerging functions (275). Specifically, annexins play an important role in 

repairing sarcolemma damage (276). DNA repair and cellular response to stress are the 

terms that comprise cluster 12. Cluster 14 comprises genes involved in protein transport, 

and transport of substances into the nucleus. Terms associated with skeletal muscle 

differentiation comprise cluster 15 and 20. Finally, cluster 22 comprised genes involved 

in the biosynthetic process of nucleotide metabolism. Also included in this cluster was 

ATP biosynthetic process, which involves chemical process and reactions that result in 

formation of ATP. Genes contained within this term included the Na
+
/K

+
 ATPase 

transporter, H
+
 transporter associated with lysosomes, and the predicted gene of the 

ATPase synthase of complex V in the mitochondria.  

MicroRNA pathway analysis 

 MicroRNA’s (miRNAs) are an emerging class of molecules that play a 

fundamental role in mediating the stress response to changes in contractile activity and 

disease states in skeletal muscle (205, 206). Thus, we hoped to gain novel insight into the 

regulatory pathways regulated by miRNA in Ts65Dn muscle. miRNA were identified 

from both the conservative and pathway gene lists, which included a total of 8 miRNA 

that are represented in Table 13, along with their chromosome location and fold change. 
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Seven of the eight miRNAs were down-regulated in Ts65Dn soleus. DIANA-mirPATH 

was used to collectively map predicted targets of these miRNA using TargetScan 5 to 

KEGG pathways (207). The results of this analysis are presented in Table 14. 

Importantly, a number of pathways relevant to skeletal muscle biology were identified 

that included: the Wnt, mTOR, ErB, and insulin signaling pathways; regulation of actin 

cytoskeleton; type 2 diabetes mellitus; ubiquitin mediated proteolysis; and the 

phosphatidylinositol signaling system. The most affected pathway was the Wnt signaling 

pathway with 39 genes targeted by the list of miRNAs.   
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DISCUSSION 

 Muscle weakness contributes to mobility limitations in persons with DS, and 

impaired mobility is predictive of mortality in this population (14, 26, 61). To date, there 

have been no systematic efforts to identify potential mechanisms of muscle weakness in 

persons with DS. The purpose of the current experiments was to perform a functional 

characterization of skeletal muscle from Ts65Dn mice, with the intent to reveal potential 

mechanisms of DS-associated muscle weakness. Several key findings emerged from 

these experiments that include: 1) SOD1 was over-expressed in skeletal muscle of 

Ts65Dn mice; 2) SOD1 over-expression was not associated with oxidative stress; 3) 

muscle from Ts65Dn mice failed to recover from fatiguing contraction to the same 

degree as muscle of wild-type mice, which is an indication of impaired muscle 

performance; and 4) global gene expression patterns revealed significant alterations in 

numerous cell signaling pathways, which provide insight into the potential mechanisms 

of muscle dysfunction in DS. A discussion of these key findings is presented in the 

following sections. 

Skeletal muscles from Ts65Dn mice over-express SOD1 

 SOD1 is located in the cytosol and inter-membrane space of the mitochondria and 

functions to dismutate superoxide radicals to hydrogen peroxide (41). Persons with DS, 

and the Ts65Dn mouse, could over-express SOD1 because the gene is present in triplicate 

(137, 144). The “gene dosage effects” hypothesis predicts that the increased gene copy 

number leads to an increase in gene products. At the cellular level, this signifies that 

over-expression of SOD1 may lead to increased production of hydrogen peroxide. If 

hydrogen peroxide production outpaced its removal by CAT and GPX, this could 
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contribute to the development of oxidative stress. This notion is supported by findings 

showing over-expression of SOD1 without a comparable increase in the levels of CAT 

and GPX in non-muscle tissues from persons with DS (69, 71). In addition, neurons and 

astrocytes isolated from persons with DS and hematopoietic stem cells from Ts65Dn 

mice exhibit elevated oxidant production (42, 56). Thus, we hypothesized that skeletal 

muscle of Ts65Dn mice would over-express SOD1 and demonstrate oxidative stress.

 As anticipated, SOD1 expression was higher in Ts65Dn soleus by 1.3-fold, but 

below what is predicted by gene dosage (i.e., 1.5-fold). Conversely, SOD1 expression in 

Ts65Dn FDB fibers was 3-fold higher than WT fibers, which is much higher than what is 

predicted by gene dosage. The differing expression levels between the two muscles could 

be explained by the method used to examine SOD1 (Western blot vs. 

immunofluorescence), the muscle analyzed [slow-twitch (soleus) vs. fast-twitch (FDB)], 

and part of the muscle analyzed (soluble fraction of muscle homogenate vs. single whole 

fibers). This said, variability in the over-expression of SOD1 in various tissues has been 

reported in persons with DS and Ts65Dn mice. For example, the level of SOD1 over-

expression varies within different brain regions in persons with DS (71). Similar findings 

have been reported in Ts65Dn mice, as the level of SOD1 over-expression varies between 

tissues (161). Also, only 37% of genes across 5 different tissues in Ts65Dn mice were 

expressed at the theoretical value of 1.5 fold (161).  

 There was also no change in the expression levels of CAT, GPX1, or SOD2. This 

finding is consistent with results showing transgenic over-expression of SOD1 does not 

affect CAT or SOD2 expression in the mouse diaphragm, and that over-expression of a 

human SOD1 transgene in myoblasts does not affect GPX or CAT activities (126, 132). 
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Overall, these findings are consistent with other studies showing over-expression of 

SOD1 and normal levels of CAT and GPX1 in non-muscle tissues from persons with DS 

(69, 71).  

Skeletal muscle from Ts65Dn mice does not exhibit oxidative stress 

 Several non-muscle tissues from humans and mice with DS have demonstrated 

the presence of oxidative stress (42-45, 56). However, our findings indicated skeletal 

muscle oxidant production was similar between the Ts65Dn and WT mice. Although this 

is surprising, one possible explanation may be the level of SOD1 over-expression was not 

of sufficient magnitude to elevate oxidant production beyond what was observed in WT 

fibers. Experiments conducted using primary muscle cell cultures derived from SOD1 

over-expressing mice support this hypothesis (132). Myoblast lines were derived from 

WT mice and mice hemi- or homozygous for a human SOD1 transgene with SOD1 

activities 3- and 5-fold higher than WT, respectively. These authors were able to 

demonstrate that a 3-fold increase in SOD1 activity only modestly modulated superoxide 

radical and hydrogen peroxide levels, and it required a 5-fold change to significantly alter 

levels within the muscle cells. The level of SOD1 expression was 3-fold higher in 

Ts65Dn FDB fibers compared to WT fibers, which is similar to the expression of SOD1 

in hemizygous myoblasts, which likely explains why Ts65Dn FDB fibers did not exhibit 

elevated oxidant production. In support of these findings, we showed that hydrogen 

peroxide content measured using the Amplex Red assay of gastrocnemius muscles was 

similar between groups. In summary, SOD1 over-expression does not affect basal oxidant 

production in Ts65Dn muscle. However, since both muscle contraction and temperature 
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affect oxidant production, future studies could examine the effect of these variables on 

oxidant production in Ts65Dn muscle (187).  

 To further assess the impact of SOD1 over-expression on the development of 

oxidative stress in Ts65Dn muscle, we examined the expression levels of 4-HNE and 

protein carbonyls, which are markers of lipid peroxidation and protein oxidation, 

respectively. Levels of 4-HNE were similar between groups, but protein carbonyls were 

elevated in Ts65Dn soleus by 20%. A possible explanation for the selective accumulation 

of protein carbonyls is two-fold. First, in spite of the fact that components of proteolytic 

pathways were up-regulated, as indicated by the microarray analyses, the efficiency of 

these processes may be compromised in DS tissue. For example, the chymotrypsin-like 

proteolytic activity of the proteasome is reduced in the cerebellum of Ts65Dn mice (277). 

Thus, the signal for protein degradation is active in Ts65Dn muscle, but the efficiency of 

the process may be compromised. The net effect would be the accumulation of oxidized 

proteins, since the proteasome is primarily responsible for degrading oxidized proteins 

(278). If proteasome activity is lower in Ts65Dn muscle, this bears the question why 

wasn’t 4-HNE higher in Ts65Dn soleus? One possible reason is that 4-HNE is 

preferentially degraded by the lysosomal pathway (279). Therefore, if proteasome 

activity is indeed depressed in Ts65Dn muscle, the lysosomal pathway could selectively 

degrade 4-HNE. Collectively, our results do not support the hypothesis that over-

expression of SOD1 leads to oxidative stress in Ts65Dn muscle. Furthermore, increased 

levels of protein carbonyls may be the result of a decrease in the degradation of oxidized 

proteins. 
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SOD1 expression is associated with oxidant production in wild-type mice  

 A strong inverse relationship between SOD1 expression and oxidant production 

was observed in the FDB fibers of WT mice (p=-0.72). The relationship between SOD1 

and oxidant production in Ts65Dn fibers was weak (p=0.18), suggesting oxidant 

production was independent of SOD1 expression. The theoretical model proposed by 

Xing and colleagues can be used to explain the observed relationships (Figure 18) (132). 

The model proposes that WT muscle falls on the downward slope of the inverted bell-

shaped curve, which means that increases in SOD activity reduces cellular susceptibility 

to oxidative stress by decreasing oxidant production. Thus, a negative, inverse 

relationship between SOD1 expression and oxidant production would be expected in WT 

FDB fibers. The model can also be used to explain the lack of a relationship in Ts65Dn 

FDB fibers. For example, the model proposes that smaller increases in SOD1 activity 

cause both an increase in dismutation of superoxide radical and production of hydrogen 

peroxide. Thus, Ts65Dn FDB fibers could be near the nadir of the curve, and if this were 

the case, a lack of relationship between oxidant production and SOD1 expression would 

not be surprising. Collectively, these studies suggest that the expression of SOD1 is 

tightly coupled to oxidant production in WT FDB fibers.  

Ts65Dn soleus does not exhibit impaired isometric force 

 Persons with DS exhibit severe reductions in muscle strength (15, 20). Thus, we 

hypothesized that Ts65Dn muscle would exhibit deficits in force-generating capacity in 

the non-fatigued state. However, isometric contractile properties were similar between 

groups. This finding is consistent with the similarities in soleus muscle mass, myosin 

heavy chain composition, predicted cross-sectional area, and the total number of fibers 
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between groups. However, quantification of single fiber CSA of the soleus revealed a 

leftward shift in the fiber area distributions, which indicated a greater number of smaller-

sized fibers in Ts65Dn muscle. It is important to draw attention to the difference in age 

between the animals that were assessed for force, which were younger than those used to 

assess muscle morphology (6 vs. 13 months). Due to limitations in tissue availability, 

CSA was originally assessed on the contracted soleus. However inspection of the muscle 

sections showed evidence of fiber damage from the contractile protocol (e.g., presence of 

very large fibers) that was independent of genotype. Thus, we chose to assess soleus CSA 

in the second group of animals that were not subjected to the contractile protocol. 

Therefore, the discrepancy between force and fiber size could be explained by age. It is 

possible that changes in myofiber CSA occur at a younger age in Ts65Dn than WT mice. 

We believe it is unlikely that CSA was different in the group of animals subjected to the 

contractile protocol given that soleus muscle mass, predicted muscle cross-sectional area, 

force output, and myosin heavy chain composition were all similar between groups. 

Further study of the effects of age on skeletal muscle function and morphology in 

Ts65Dn mice is warranted. 

 There are other factors that could explain the lack of a force deficit in Ts65Dn 

muscle. In particular, our in vitro muscle preparation eliminated factors related to 

neuromuscular transmission that are important in vivo. The microarray analysis identified 

a number of differentially regulated genes that are involved in neuromuscular 

transmission. Thus, it is possible that a principal defect in Ts65Dn muscle lies at the 

neuromuscular junction. In support of this hypothesis, the morphology of neuromuscular 

junctions from tongue skeletal muscle fibers are abnormal in persons with DS (280). 
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Thus, using a muscle preparation where the nerve supply is intact and directly stimulated 

is of clear interest and could potentially reveal alterations in neuromuscular transmission 

in Ts65Dn muscle. 

Ts65Dn soleus exhibits post-fatigue muscle weakness 

 Muscle fatigue is characterized by impairment in muscle force production that 

results from continuous muscle activity. Ts65Dn soleus muscles did not exhibit greater 

fatigability as hypothesized; however, following the exercise stress there was evidence of 

post-fatigue weakness. Ts65Dn soleus muscles recovered to only 54% of the initial stress 

at the end of the recovery period compared to 61% for WT. In addition, examination of 

the resting absolute force values (measured between contractions) during the recovery 

period indicated that the Ts65Dn soleus did not exhibit similar decreases in resting 

absolute force compared to WT, which indicates an impaired ability of the muscle to 

relax.  

 Muscle fatigue is associated with a number of biochemical changes, such as 

depletion of ATP and phosphocreatine, increases in H
+
, inorganic phosphate, and lactate 

that can subsequently effect muscle force recovery following fatigue (97). We 

hypothesized that a limitation in mitochondrial function may underlie the failure of 

Ts65Dn soleus to recover to the extent of WT muscle following fatiguing contractions. In 

support of our hypothesis, cytochrome c oxidase expression levels were 22% lower in 

Ts65Dn soleus. This finding suggests that an impairment of oxidative phosphorylation 

may underlie the muscle dysfunction observed in the Ts65Dn mouse, which is consistent 

with their lower basal VO2 (58). This is particularly relevant because mitochondrial 

dysfunction has been reported in persons with DS (214). Moreover, microarray analyses 
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identified alterations in pathways involved in glucose and fat metabolism, and ATP 

biosynthesis that could also be indicative of an underlying mitochondrial limitation. For 

example, impaired glucose uptake, utilization, and storage, and enhanced fat storage in 

skeletal muscle are associated with mitochondrial dysfunction (281, 282).  

We report a 30% reduction in the myonuclear domain of FDB fibers from 

Ts65Dn mice, which could also be related to a limitation in mitochondrial function. The 

reason for this can be explained by findings from SOD1 knockout mice, which is 

considered an accelerated model of skeletal muscle aging (119). These mice exhibit 

significant impairments in muscle mitochondrial function as well as a reduction in total 

myonuclei and volume in single skeletal muscle fibers. The authors of this work proposed 

that a reduction in myonuclei significantly limits the cell’s ability to synthesize proteins, 

which leads to mitochondrial dysfunction and reduced energy production. The muscle 

cell, in an attempt to return to homeostasis, responds by increasing proteolytic activity to 

reduce cell size. This is also consistent with our observation that proteolytic pathways 

were significantly up-regulated in Ts65Dn muscle.  

 Further insight in support of the notion that a limitation in mitochondrial function 

underlies post-fatigue weakness in Ts65Dn soleus can be explained by the fatigue and 

recovery response of soleus from mice with knockout of ATP-sensitive K
+
 channel 

(KATP). KATP channels are energy sensing channels that are activated at low ATP/ADP 

ratios, and have been shown to govern the rate and extent of force recovery following 

fatigue (283). Activation of these channels is considered a protective mechanism to 

maintain contractile capacity following fatiguing contractile activity by maintaining 

membrane excitability, decreasing voltage-dependent calcium entry, and the rise in 
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resting force (283). Soleus muscles from knockout KATP mice or inhibition of KATP with 

glibenclamide, fail to recover to the same extent as WT following fatiguing contractile 

activity. This is explained in part by the inability to reduce resting force during fatigue 

and recovery (284, 285). We propose that during the development of fatigue in Ts65Dn 

soleus, KATP channels open at an earlier time due to a reduction in ATP/ADP ratio, which 

would explain the lower resting force during the fatiguing protocol in Ts65Dn soleus 

(non-significant). However, as the muscle was stressed further towards the later part of 

fatigue development, resting force gradually increased because all available KATP 

channels were activated and this mechanism could no longer compensate for reduced 

energy production. This resulted in decreased tetanic force and increased resting force 

during the recovery period.  

 Our hypothesis that a limitation in mitochondrial function contributes to the 

impaired recovery response in Ts65Dn soleus bears the question why Ts65Dn soleus was 

not more fatigable? If in fact Ts65Dn muscle exhibits mitochondrial dysfunction, we 

would anticipate a decrease in ATP production from oxidative phosphorylation and a 

greater reliance on glycolysis. The reduced ATP production could impair muscle 

performance, and this should become particularly evident when the muscle is continually 

activated.   

One possible explanation why Ts65Dn soleus did not exhibit greater fatigability 

could be the intensity of the stimulation protocol. Repeated activation of muscle can 

cause impairment in membrane excitability due to alterations in K
+
 ion gradients (97). 

Decreased membrane excitability is a contributing factor to the reduction in force output 

(~30%) during fatiguing contractions, particularly for in vitro muscle preparations (97). 
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Thus, excitation failure could mask an underlying metabolic defect during fatigue. This 

rationale has been proposed previously to explain the similar rates of fatigue in knockout 

-actinin-3 and WT muscles, but greater recovery from fatigue in -actinin-3 deficient 

muscles (286). Deficiency in -actinin-3 leads to the development of a more oxidative 

muscle phenotype that is characterized by enhanced enzyme activity of citrate synthase, 

succinate dehydrogenase, and cytochrome c oxidase. The -actinin-3 deficient muscles, 

however, do not display fatigue resistance compared to WT muscles as expected, but they 

do exhibit a faster rate of recovery following fatigue. These authors proposed, as we do, 

that the intensity of the fatigue protocol masked the expected fatigue differences between 

groups.  

Limitations 

 We acknowledge the following limitations: First, we were unable to account for 

the possibility that congenital heart defects, which are known to occur in the Ts65Dn 

mouse model of DS, affected skeletal muscle structure and function (153). Second, all 

functional measurements were performed using the soleus, and the results presented 

cannot be generalized to other muscles, such as fast-muscles, which can be affected 

differently by myopathy. Moreover, the functional assessment of the soleus was 

performed in vitro, which excludes factors that are relevant in vivo, such as 

neuromuscular transmission and blood flow. Third, protein content but not enzyme 

activity was quantified, thus we provide no information on protein function. Fourth, due 

to the limited available tissue, CSA of the soleus was assessed in an older group of 

animals than those used for contractile measurements. Thus, we provide no data on fiber 

size in the younger group of animals used for those experiments and can only speculate 
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that fiber size was similar between groups. Finally, while we suggest that a limitation in 

mitochondrial function could explain post-fatigue weakness in Ts65Dn soleus, we did not 

provide a direct measure of mitochondrial function. 

Significance of findings 

 Skeletal muscle function in the Ts65Dn mouse model of DS has not been 

examined previously and there has been no systematic effort made to establish an animal 

model to explore the muscle dysfunction that is widely reported in persons with DS (18, 

20). To our knowledge this is the first functional characterization of skeletal muscle from 

Ts65Dn mouse. We demonstrated that muscle from Ts65Dn mice exhibits post-fatigue 

weakness, which may be the result of a limitation in mitochondrial function. Further 

delineation of muscle dysfunction in the Ts65Dn mouse is warranted, which may 

ultimately lead to therapies for persons with DS in an effort to improve muscle function 

and mobility for this population of individuals. 
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Table 4. Animal characteristics. 

Group of animals Variable Wild-type Ts65Dn 

1 Number of animals 16 14 

 Age (months) 5.6  0.2 5.6  0.2 

 Body mass (g) 34.5  1.2 32.6  1.3 

2 Number of animals 7 4 

 Age (months) 12.9  0.3 12.7  0.3 

 Body mass (g) 38.3  1.7 32.0  0.2* 

 

* p < 0.05 
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Table 5. Soleus muscle characteristics. 

Variable Wild-type Ts65Dn 

Mass* (mg) 10.2  0.4 10.2  0.4 

Muscle mass: body mass ratio 0.30  0.01 0.32  0.02 

L0 (cm) 1.25  0.02 1.21  0.02 

Predicted cross-section area (mm
2
) 1.09  0.05 1.11  0.04 

Total fiber number 582.6  28.8 550.7  14.2 

 

*Average of the right and left soleus muscles.
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Figure 6. Soleus protein expression of SOD1, CAT, GPX1, and SOD2. Representative Western Blot images of SOD1 (~18 kDa), CAT 

(~ 62 kDa), GPX1 (22 kDa), and SOD2 (~ 25 kDa) are shown in A. SOD1, CAT, and GPX1 protein bands were normalized to the 

GAPDH bands shown. SOD2 protein bands were also normalized to GAPDH (bands not shown). In this figure DS refers to Ts65Dn. 

The arbitrary optical density of SOD1, CAT, GPX1, and SOD2 relative to GAPDH are shown in B. N = 10 animals/group. * 

Significantly different from WT (p < 0.05).
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Figure 7. Oxidative injury assessed by protein carbonyl and 4-HNE in soleus. Representative Western Blot of protein carbonyls (A, 

left) and Coomassie stained membrane (A, right). In this figure DS refers to Ts65Dn. Arbitrary optical density of protein carbonyl (B) 

and 4-HNE (C) relative to membrane protein. N=10 animals/group for WT for protein carbonyls and 4-HNE. N=9 Ts65Dn animals for 

protein carbonyls and n=8 for 4-HNE. * Significantly different from WT (p < 0.05). 
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Figure 8. Oxidant production assessed in isolated adult skeletal muscle fibers. 

Representative bright field (A, left) and DCF emission (A, right) images are shown. DCF 

emission at 15 minutes expressed relative to time 0 (B). N=4 animals/group and n=2-6 

fibers/animal. 16 total fibers from Ts65Dn and 18 from WT. 
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Figure 9. Hydrogen peroxide content of gastrocnemius assessed using Amplex Red. 

N=10 animals/group. 
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Figure 10. Immunofluorescence labeling of isolated adult single skeletal muscle fibers for SOD1. Representative bright field (A, upper 

left), DAPI (A, upper right), SOD1 (A, lower left), and DAPI and SOD1 composite (A, lower right) images of an isolated myofiber 

are shown. The arbitrary optical density of SOD1 are shown in B. N=4 animals/group and n=1-5 fibers/animal. 14 total fibers were 

analyzed from Ts65Dn and 12 fibers from WT.* Significantly different from WT (p < 0.05)
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Figure 11. Relationship between DCF emission and SOD1 expression. Representation 

bright field (A, left), DCF (A, middle), and SOD1 (A, right) images of an isolated 

myofiber are shown. The SOD1 image was brightened to visually enhance the image for 

this figure. The correlation between DCF and SOD1 for WT fibers (r=-0.71, p < 0.05) is 

shown in B. The correlation for Ts65Dn fibers was not significant and data is not shown 

(r=0.18, p > 0.05). N=4 animals/group and n=1-5 fibers/animal. 14 total fibers were 

analyzed from Ts65Dn and 12 fibers from WT. 
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Table 6. Soleus contractile properties. 

Variable Wild-type (n=11) Ts65Dn (n=12) 

Twitch   

Peak tension (mN) 46.2  1.8 44.5  2.7 

Specific peak tension (N/cm
2
) 4.3  0.2 4.0  0.2 

Time to peak tension (ms) 19.1  1.2 19.3  1.0 

Half-relaxation time (ms) 22.6  6.3 24.8  4.1 

Tetanus   

Peak tension (mN) 230.7  10.3 239.7  11.1 

Specific peak tension (N/cm
2
) 21.2  0.6 21.6  0.6 

Twitch: tetanus ratio 0.20  0.01 0.19  0.01 
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Figure 12. Force-frequency relationship of soleus determined in vitro. A) Absolute force. 

B) Relative force (% P0). C) Stress. N=11 for WT and n=12 for Ts65Dn. 
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Figure 13. Fatigue and recovery response of soleus determined in vitro. A) Absolute 

force. B) Resting absolute force. C) Percent of initial stress. N=11 for WT and n=9 for 

Ts65Dn. * Significantly different from WT (p < 0.05). 
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Figure 14. Soleus myosin heavy chain isoform composition determined by electrophoresis (A) and immunofluorescence (C) are 

shown. Representative images of electrophoresis separation of myosin heavy chain isoforms and labeling by immunofluorescence are 

shown in B and D, respectively. N=6 animals/group for electrophoresis. For immunofluorescence, n=6 for WT and n=5 for Ts65Dn. 
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Figure 15. Soleus morphology assessed using H&E staining. Representative image of a 

complete soleus cross-section (A, left) and morphology of soleus for WT (A, right top) 

and Ts65Dn (A, right, bottom) at 20X magnification are shown. Cross-sectional area 

distribution is shown in B. N=3 animals/group. 

 



www.manaraa.com

110 

 

Table 7. Flexor digitorum brevis (FDB) fiber characteristics (n=4 animals/group).  

 

Variable Wild-type Ts65Dn 

Number of fibers 8 12 

Fiber length (m) 297.010.2 285.413.3 

Fiber diameter (m) 31.82.2 26.81.5 

Fiber volume (mm
3
) 0.000240.0003 0.000170.0002 

Number of myonuclei 44.52.1 40.82.6 
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Figure 16. Myonuclear domain of isolated adult skeletal muscle fibers. Representative bright field (A, top) and DAPI (A, bottom) 

images of an isolated myofiber are shown. The DAPI image was visually enhanced to highlight the nuclei. Myonuclear domain is 

shown for WT and Ts65Dn FDB fibers in B. N=4 animals/group and n=1-4 fibers/animal. N=8 fibers for WT and n=12 fibers for 

Ts65Dn. * Significantly different from Ts65Dn (p < 0.05) 
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Figure 17. Soleus protein expression of COX2. COX2 protein bands expressed relative to 

GAPDH. Inset: Representative Western Blot images of COX2 and GAPDH. In this figure 

DS refers to Ts65Dn. N=10 animals/group. * Significantly different from Ts65Dn (p < 

0.05). 
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Table 8. Expression of trisomic genes in soleus muscle. 

Probe ID Gene symbol 

Fold change 

Ts65Dn/WT 

Nominal p-value 

Up-regulated      

10437055 single-minded homolog 2 (Drosophila) (Sim2) 1.82 0.000 

10436830 interferon (alpha and beta) receptor 2 (Ifnar2) 2.06 0.000 

10436892 intersectin 1 (SH3 domain protein 1A) (Itsn1) 1.84 0.001 

10440600 chaperonin containing Tcp1, subunit 8 (theta) (Cct8) 1.56 0.001 

10436951 RIKEN cDNA 1190017O12 gene (1190017O12Rik) 1.19 0.002 

10440491 amyloid beta (A4) precursor protein (App) 2.48 0.002 

10440593 RWD domain containing 2B (Rwdd2b) 1.70 0.002 

10436708 ubiquitin specific peptidase 16 (Usp16) 1.49 0.003 

10437080 tetratricopeptide repeat domain 3 (Ttc3) 2.22 0.003 

10437023 microrchidia 3 (Morc3) 3.14 0.003 

10441064 Down syndrome critical region gene 3 (Dscr3) 2.34 0.004 
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10441313 C2 calcium-dependent domain containing 2 (C2cd2) 2.22 0.004 

10440849 Synaptojanin-1 gene:ENSMUSG00000022973  1.42 0.005 

10440964 crystallin, zeta (quinone reductase)-like 1 (Cryzl1)  1.60 0.005 

10440840 RIKEN cDNA 1110004E09 gene 1.64 0.005 

10440929 phosphoribosylglycinamide formyltransferase (Gart) 1.50 0.007 

10436873 Son DNA binding protein (Son) 1.91 0.008 

10441115 bromodomain and WD repeat domain containing 1 (Brwd1) 2.63 0.008 

10440926 DnaJ (Hsp40) homolog, subfamily C, member 28 (Dnajc28) 1.54 0.008 

10437136 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1a (Dyrk1a) 2.33 0.009 

10437180 SH3-binding domain glutamic acid-rich protein (Sh3bgr) 1.30 0.010 

10441003 runt related transcription factor 1 (Runx1) 1.33 0.011 

10440977 ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit (Atp5o) 1.20 0.015 

10440993 regulator of calcineurin 1 (Rcan1) 1.78 0.015 

10437174 tryptophan rich basic protein (Wrb) 1.96 0.019 

10440534 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin 1.81 0.025 
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type 1 motif, 5 (aggrecanase-2) (Adamts5) 

10441093 avian erythroblastosis virus E-26 (v-ets) oncogene related (Erg) 1.29 0.031 

10437160 E26 avian leukemia oncogene 2, 3' domain (Ets2) 2.13 0.031 

10545528 phosphatidylinositol glycan anchor biosynthesis, class P (Pigp) 1.20 0.033 

10436983 dopey family member 2 (Dopey2) 1.21 0.037 

10441107 proteasome (prosome, macropain) assembly chaperone 1 (Psmg1) 1.56 0.037 

10436698 N-6 adenine-specific DNA methyltransferase 1 (putative) (N6amt1) 1.53 0.041 

10436967 carbonyl reductase 1 (Cbr1) 1.44 0.041 

10436865 interferon gamma receptor 2 (Ifngr2) 1.41 0.043 

10436678 GA repeat binding protein, alpha (Gabpa) 1.78 0.049 

10436666 junction adhesion molecule 2 (Jam2) 1.63 0.059 

10436841 interleukin 10 receptor, beta (Il10rb) 1.38 0.065 

10440574 ring finger protein 160 (Rnf160) 1.43 0.068 

10440881 RIKEN cDNA 1810007M14 gene (1810007M14Rik) 1.31 0.077 

10436849 interferon (alpha and beta) receptor 1 (Ifnar1) 1.68 0.087 
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10440770 splicing factor, arginine/serine-rich 15 (Sfrs15) 1.22 0.090 

10440471 mitochondrial ribosomal protein L39 (Mrpl39) 1.18 0.130 

10436978 carbonyl reductase 3 (Cbr3) 1.31 0.134 

10441038 holocarboxylase synthetase (biotin- [propriony-Coenzyme A-carboxylase 

(ATP-hydrolysing)] ligase) (Hlcs) 1.21 0.154 

10440513 cysteine and tyrosine-rich protein 1 (Cyyr1) 1.33 0.223 

10436945 solute carrier family 5 (inositol transporters), member 3 (Slc5a3) 1.17 0.329 

10441161 high mobility group nucleosomal binding domain 1 (Hmgn1) 1.04 0.357 

10440522 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin 

type 1 motif, 1 (Adamts1) 1.05 0.357 

10436941 mitochondrial ribosomal protein S6 (Mrps6) 1.07 0.360 

10437224 myxovirus (influenza virus) resistance 2 (Mx2) 1.11 0.381 

10436727 open reading frame 63 (ORF63) 1.17 0.385 

10436783 superoxide dismutase 1, soluble (Sod1) 1.05 0.434 

10440918 transmembrane protein 50B (Tmem50b) 1.21 0.632 
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10437205 Purkinje cell protein 4 (Pcp4) 1.05 0.756 

10440794 RIKEN cDNA 2610039C10 gene (2610039C10Rik) 1.03 0.802 

10436734 BTB and CNC homology 1 (Bach1) 1.01 0.953 

Down-regulated    

10441330 uncharacterized protein gene:ENSMUSG00000045331  1.38 0.001 

10441233 immunoglobulin superfamily, member 5 (Igsf5) 1.47 0.006 

10440621 UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 5 (B3galt5) 1.29 0.008 

10437073 integrin beta 2-like (Itgb2l) 1.29 0.009 

10535647 oligodendrocyte transcription factor 1 (Olig1) 1.33 0.010 

10436958 claudin 14 (Cldn14) 1.49 0.018 

10437151 transmembrane protease, serine 2 (Tmprss2) 1.36 0.020 

10440800 RIKEN cDNA 4930563D23 gene (4930563D23Rik) 1.34 0.021 

10441280 oligodendrocyte transcription factor 2 (Olig2) 1.22 0.023 

10440647 potassium inwardly-rectifying channel, subfamily J, member 6 (Kcnj6) 1.16 0.030 

10440953 SET domain containing 4 (Setd4) 1.35 0.034 
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10440738 potassium voltage-gated channel, Isk-related subfamily, gene 2 (Kcne2) 1.41 0.034 

10441167 melanocortin 2 receptor accessory protein (Mrap) 1.23 0.035 

10440989 hormonally upregulated Neu-associated kinase (Hunk) 1.25 0.040 

10441073 family with sequence similarity 3, member B (Fam3b) 1.34 0.040 

10437040 receptor-interacting serine-threonine kinase 4 (Ripk4) 1.44 0.047 

10436636 chromatin assembly factor 1, subunit B (p60) (Chaf1b) 1.17 0.070 

10441231 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit f, isoform 2 

(Atp5j2) 1.06 0.076 

10440643 neural cell adhesion molecule 2 (Ncam2) 1.18 0.080 

10436823 T-cell lymphoma invasion and metastasis 1 (Tiam1) 1.13 0.106 

10436804 PR domain containing 15 (Prdm15) 1.11 0.118 

10436809 Down syndrome cell adhesion molecule (Dscam) 1.33 0.128 

10436788 RIKEN cDNA 4932438H23 gene (4932438H23Rik) 1.25 0.153 

10440903 Mus musculus miR-155 stem-loop  1.25 0.161 

10440903 claudin 8 (Cldn8) 1.11 0.163 
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10437191 potassium voltage-gated channel, Isk-related subfamily, member 1 (Kcne1) 1.15 0.180 

10441178 claudin 17 (Cldn17) 1.21 0.194 

10441195 C21orf63 protein (C21orf63) 1.25 0.211 

10436828 beta-site APP-cleaving enzyme 2 (Bace2) 1.18 0.231 

10440985 potassium inwardly-rectifying channel, subfamily J, member 15 (Kcnj15) 1.10 0.235 

10441244 Leber congenital amaurosis 5-like (Lca5l) 1.15 0.236 

10441017 downstream neighbor of SON (Donson) 1.13 0.243 

10441254 chloride intracellular channel 6 (Clic6) 1.10 0.300 

10440655 hypothetical protein LOC207932 gene:ENSMUSG00000039929  1.10 0.332 

10436947 glutamate receptor, ionotropic, kainate 1 (Grik1)  1.03 0.567 

10441270 myxovirus (influenza virus) resistance 1 (Mx1) 1.03 0.748 

10437195 ripply3 homolog (zebrafish) (Ripply3) 1.04 0.797 

10441032 zinc finger protein 295 (Zfp295), transcript variant 1 1.02 0.897 
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Table 9. Differentially expressed genes in Ts65Dn soleus relative to wild-type.  

Probe ID Gene description/symbol Function of encoded protein Fold change 

Up-regulated     

10440558 ring finger protein 160 (Rnf160)* E3 ubiquitin ligase, neuronal 3.66 

10597323 cyclic AMP-regulated phosphoprotein, 21 

(Arpp21) 

Nucleic acid binding 1.68 

10472058 Rap1 interacting factor 1 homolog (yeast) (Rif1) Protein binding, response to DNA damage 

stimulus 

2.31 

10571922 NIMA (never in mitosis gene a)-related expressed 

kinase 1 (Nek1) 

Kinase, Response to DNA damage stimulus 2.37 

10530692 kinase insert domain protein receptor (Kdr) Vascular endothelial growth factor receptor, 

pro-angiogenic, VEGF signaling pathway 

1.99 

10514072 zinc finger, DHHC domain containing 21 

(Zdhhc21) 

Acyltransferase activity 3.01 

10504692 tropomodulin 1 (Tmod1) Actin/tropomyosin binding 1.89 
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10437055 single-minded homolog 2 (Drosophila) (Sim2)* DNA binding, transcription regulator 1.81 

10376163 
Rap guanine nucleotide exchange factor (GEF) 6 

(Rapgef6) 

Cell adhesion 1.84 

10436830 interferon (alpha and beta) receptor 2 (Ifnar2)* Type I interferon receptor 2.06 

10426751 
transmembrane BAX inhibitor motif containing 6 

(Tmbim6) 

Negative regulation of apoptosis 1.55 

10600836 moesin (Msn) Actin binding, Regulation of actin cytoskeleton 1.63 

10508759 replication protein A2 (Rpa2) DNA binding, Nucleotide excision repair 1.52 

10401382 numb gene homolog (Drosophila) (Numb) Regulator of muscle differentiation by inhibiting 

Notch signaling pathway 

1.63 

10578157 tankyrase, TRF1-interacting ankyrin-related ADP-

ribose polymerase (Tnks) 

Peptidyl-threonine/serine phosphorylation 1.66 

10373400 myosin, light polypeptide 6B (Myl6b) Calcium ion binding, structural constituent of 

muscle 

2.78 

10495111 WD repeat domain 77 (Wdr77) Ligand-dependent nuclear receptor transcription 2.20 
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coactivator activity 

10440556 ring finger protein 160 (Rnf160)* E3 ubiquitin ligase, neuronal 3.07 

10520288 UDP-N-acetyl-alpha-D-galactosamine:polypeptide 

N-acetylgalactosaminyltransferase 11 (Galnt11) 

Transferase activity, O-Glycan biosynthesis 1.43 

10567355 G protein-coupled receptor, family C, group 5, 

member B (Gprc5b) 

G-protein coupled receptor activity 2.16 

10480329 DnaJ (Hsp40) homolog, subfamily C, member 1 

(Dnajc1) 

Chaperone binding 1.78 

10358816 laminin, gamma 1 (Lamc1) Major noncollagenous constituent of basement 

membranes 

2.01 

10385966 annexin A6 (Anxa6) Calcium-dependent phospholipid binding, 

suggested roles in Ca
2+

 flux and inflammation 

1.64 

10503188 chromodomain helicase DNA binding protein 7 

(Chd7) 

DNA binding 2.27 

10436892 intersectin 1 (SH3 domain protein 1A) (Itsn1)* Protein binding, synaptic endocytosis 1.83 
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10440578 ring finger protein 160 (Rnf160)* E3 ubiquitin ligase, neuronal 2.16 

10571840 hydroxyprostaglandin dehydrogenase 15 (NAD) 

(Hpgd) 

Prostaglandin metabolism 2.40 

10435470 karyopherin (importin) alpha 1 (Kpna1) Protein transporter 1.90 

10530854 steroid 5 alpha-reductase 2-like 2 (Srd5a2l2) Oxidoreductase activity 4.58 

10495054 ras homolog gene family, member C (Rhoc) GTP binding 2.02 

10466800 phosphoglucomutase 5 (Pgm5) Protein binding, associates with dystrophin 1.65 

10525555 MLX interacting protein (Mlxip) DNA binding, negative regulator of glucose 

uptake 

1.76 

10523468 BMP2 inducible kinase (Bmp2k) Kinase 2.40 

10366310 oxysterol binding protein-like 8 (Osbpl8) Intracellular lipid receptor 3.45 

10490826 zinc finger and BTB domain containing 10 isoform 

1 gene (Zbtb10) 

DNA binding 1.58 

10388591 carboxypeptidase D (Cpd) Carboxypeptidase 2.12 

10471360 golgi autoantigen, golgin subfamily a, 2 (Golga2) Protein complex binding 1.70 
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10526120 protein-tyrosine sulfotransferase 1 (Tpst1) Protein-tyrosine sulfotransferase 1.77 

10440491 amyloid beta (A4) precursor protein (App)* Protein binding, neuromuscular synapse 

formation 

2.41 

10547657 complement component 3a receptor 1 (C3ar1) C3a anaphylatoxin receptor, inflammation 2.37 

10478447 serine/threonine kinase 4 (Stk4) Protein serine/threonine kinase 1.76 

10522024 TBC1 domain family, member 1 (Tbc1d1) GTPase activator, regulator of glucose transport 1.93 

Down-

regulated     

 

10472688 trans-acting transcription factor 5 (Sp5) DNA binding 1.59 

10569163 cell cycle exit and neuronal differentiation 1 

(Cend1) 

Tissue regeneration, neuronal 1.41 

10345101 collagen, type IX, alpha 1 (Col9a1) Alpha chain of IX collagen, structural molecule 1.69 

10542319 apolipoprotein L domain containing 1 (Apold1) Lipid binding 1.71 

10598493 proprotein convertase subtilisin/kexin type 1 

inhibitor (Pcsk1n) 

Endopeptidase inhibitor, Inhibitor of proprotein 

convertase subtilisin/kexin type 1 which is 

1.62 
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responsible for processing precursor proteins 

into biologically active products  

10432897 keratin 79 (Krt79) Structural molecule 1.69 

10477042 angiopoietin 4 (Angpt4) Vascular endothelial growth factor receptor 

binding 

1.45 

10461867 vacuolar protein sorting 13A (yeast) (Vps13a) 

 

Mutations cause Chorea-acanthocytosis which is 

an autosomal recessive hereditary disease, 

function is unknown 

1.49 

10383047 ectonucleotide pyrophosphatase / 

phosphodiesterase 7 (Enpp7) 

Sphingomyelin phosphodiesterase 1.54 

10376394 olfactory receptor 324 (Olfr324) G-coupled receptor 1.56 

10488558 syntaphilin (Snph) Regulates mitochondrial docking in synaptic 

buttons of axons 

1.54 

10588720 RNA binding motif protein 6 (Rbm6) DNA/RNA binding 1.42 

10430324 transmembrane serine protease 6 (Tmprss6) Iron regulation, suppressor of hepcidin 1.62 
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expression 

10449000 mesothelin (Msln) Cell adhesion 1.43 

10470959 phytanoyl-CoA dioxygenase domain containing 1 

(Phyhd1) 

Oxidoreductase 1.45 

10390909 keratin associated protein 9-3 (Krtap9-3) Structural molecule 1.68 

10589074 ariadne homolog 2 (Drosophila) (Arih2) E3 ubiquitin-protein ligase 1.85 

10434835 leprecan-like 1 (Leprel1) Procollagen-proline 3-dioxygenase, 

hydroxylation of IV collagen 

1.55 

10554061 a disintegrin-like and metallopeptidase (reprolysin 

type) with thrombospondin type 1 motif, 17 

(Adamts17) 

Hydrolase 1.53 

10392063 LIM domain containing 2 (Limd2) Metal ion binding 1.56 

10365015 zinc finger RNA binding protein 2 (Zfr2) RNA binding 1.55 

10552240 zinc finger protein 507 (Zfp507) Zinc ion binding 1.69 

10581388 lecithin cholesterol acyltransferase (Lcat) Esterification of cholesterol, 1.40 
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Glycerophospholipid metabolism pathway 

10364932 transmembrane protease, serine 9 (Tmprss9) Peptidase, proteolysis 1.48 

10485955 secretogranin V (Scg5) Enzyme inhibitor, Neuropeptide signaling 

pathway 

1.45 

10442393 netrin 3 (Ntn3) Transcription regulator, myoblast fusion, axon 

guidance 

1.41 

10563447 TP-binding cassette, sub-family C (CFTR/MRP), 

member 6 (Abcc6) 

Transporter, mutations in this gene cause 

Pseudoxanthoma elasticum, calification, ABC 

transporters 

1.59 

10432907 keratin 78 (Krt78) Intermediate filament 1.65 

10551907 nephrosis 1 homolog, nephrin (human) (Nphs1) Alpha-actinin binding, renal 1.66 

10564290 Kruppel-like factor 13 (Klf13) DNA binding 1.47 

10425507 melanin-concentrating hormone receptor 1 (Mchr1) Melanin-concentrating hormone receptor, 

Neuroactive ligand-receptor interaction 

1.53 

10500100 tumor necrosis factor, alpha-induced protein 8-like Negative regulation of immune response 1.60 
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2 (Tnfaip8l2) 

10386473 sterol regulatory element binding transcription 

factor 1 (Srebf1) 

DNA binding, regulator of lipogenesis, Insulin 

signaling pathway 

1.44 

10594199 thrombospondin, type I, domain containing 4 

(Thsd4) 

Metalloendopeptidase 1.46 

10458540 protocadherin 12 (Pcdh12) Calcium ion binding 1.47 

10421906 "PREDICTED: Mus musculus similar to ATP 

synthase, H+ transporting, mitochondrial F0 

complex, subunit d (LOC676483) 

Hydrogen ion transmembrane transporter, 

Oxidative phosphorylation 

1.81 

10601152 neuroligin 3 (Nlgn3) Regulation of synaptic transmission, Cell 

adhesion molecules 

1.41 

10488771 N-terminal EF-hand calcium binding protein 3 

(Necab3) 

Calcium ion binding, regulator of amyloid 

precursor protein metabolism, substrate of Nek1 

1.67 

10460585 fos-like antigen 1 (Fosl1) DNA binding, component of transcription factor 

complex AP-1, Wnt signaling pathway 

1.43 
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10608721 steroid sulfatase (Sts) Steryl-sulfatase 1.43 

10524955 tescalcin (Tesc) Calcium ion binding 1.53 

10546452 a disintegrin-like and metallopeptidase (reprolysin 

type) with thrombospondin type 1 motif, 9 

(Adamts9) 

Endopeptidase 1.69 

10428222 neurocalcin delta (Ncald) Calcium ion binding 1.42 

10585840 CD276 antigen precursor (Cd276) Negative regulation of immune response, Cell 

adhesion molecules 

1.52 

10352971 RB1-inducible coiled-coil 1 (Rb1cc1) Regulator of myoblast differentiation, Protein 

complex (ULK1-ATG13-RB1CC1 complex) is 

essential for mammalian autophagy  

1.58 

10454192 transthyretin (Ttr) Hormone binding, transport of thyroid 

hormones and retinol 

1.53 

10559989 aurora kinase C (Aurkc) Kinase 1.46 

10351471 U2AF homology motif (UHM) kinase 1 (Uhmk1) Kinase 1.48 
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10560575 avian reticuloendotheliosis viral (v-rel) oncogene 

related B (Relb) 

DNA binding, Alternative NF-kB pathway 1.40 

10409369 synuclein, beta (Sncb) Synaptic integrity, axon terminus 1.41 

10549594 tweety homolog 1 (Drosophila) (Ttyh1) Chloride channel 1.47 

10416099 adrenergic receptor, alpha 1a (Adra1a) Alpha1-adrenergic receptor, mediates glucose 

uptake in L6 cells 

1.45 

10543466 G protein-coupled receptor 37 (Gpr37) G-protein coupled receptor protein signaling 

pathway, Parkinson's disease 

1.56 

10377245 dehydrogenase/reductase (SDR family) member 

7C (Dhrs7c) 

Oxidoreductase 1.46 

10418835 solute carrier family 18 (vesicular monoamine), 

member 3 (Slc18a3) 

Mediator of acetylcholine transport into synaptic 

vesicles 

1.61 

 

* Gene is trisomic in Ts65Dn. 
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Table 10. Differentially expressed genes in Ts65Dn soleus relative to wild-type with no functional annotation.  

Probe ID Gene description/symbol Fold change 

Up-regulated   

10506668 Yip1 domain family, member 1 (Yipf1) 1.64 

10496405 Predicted gene, EG329763 (EG329763) 2.73 

10501676 hippocampus abundant gene transcript 1 (Hiat1) 1.76 

10566870 transmembrane protein 41B (Tmem41b) 1.90 

10350024 kelch-like 12 (Drosophila) (Klhl12) 1.79 

10468275 polycomb group ring finger 6 (Pcgf6) 2.14 

10354506 major facilitator superfamily domain containing 6 (Mfsd6) 1.81 

10494445 ENSMUSG00000049288 2.33 

10357954 protein phosphatase 1, regulatory (inhibitor) subunit 12B (Ppp1r12b) 1.41 

10504668 ENSMUSG00000078708 3.13 

10419416 RIKEN cDNA 3632451O06 gene (3632451O06Rik) 2.30 

10558057 bromodomain and WD repeat domain containing 2 (Brwd2) 1.94 
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Down-regulated   

10457836 ENSMUSG00000073619 1.81 

10445891 similar to 3-phosphoglycerate dehydrogenase (LOC668506) 1.81 

10538704 ENSMUSG00000064515 1.70 

10509039 RIKEN cDNA 4930555I21 gene (4930555I21Rik) 1.41 

10576088 mRNA for mKIAA1858 protein 1.54 

10425109 leucine rich repeat and fibronectin type III, extracellular 2 (Elfn2) 1.53 

10348570 espin-like (Espnl) 1.50 

10604599 ENSMUSG00000081843 1.44 

10459770 ENSMUSG00000076229 1.57 

10524227 RIKEN cDNA 2410025L10 gene (2410025L10Rik), transcript variant 1 1.61 

10519209 matrix-remodelling associated 8 (Mxra8) 1.40 

10449654 ENSMUSG00000073427 1.55 

10582221 RIKEN cDNA 1700018B08 gene (1700018B08Rik) 1.38 

10379836 B6-derived CD11 +ve dendritic cells cDNA 1.52 
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10516238 RIKEN cDNA 1110065P20 gene (1110065P20Rik) 1.41 

10468037 ENSMUSG00000035243 1.55 

10380514 family with sequence similarity 117, memberA (Fam117a) 1.56 

10598126 hedgehog interacting protein-like 2 1.72 

10458709 gene model 94 (Gm94) 1.63 

10348000 RIKEN cDNA 2810459M11 gene (2810459M11Rik) 1.45 

10495592 NCBIM37:3:116527020:116550142:1 1.46 

10477423 gene model 1006 (Gm1006) 1.50 

10510880 ENSMUSG00000057751 1.76 

10443852 ENSMUSG00000053467 1.54 

10568318 cDNA sequence BC039632 (BC039632) 1.84 

10551159 ribosomal protein L15 (LOC100047962) 1.59 

10569311 ribosomal protein L27a-like (LOC270015) 1.72 

10398211 hedgehog interacting protein-like 1 (Hhipl1) 1.59 

10513112 erythrocyte protein band 4.1-like 4b (Epb4.1l4b) 1.52 
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10600781 predicted gene, EG245516 (EG245516) 1.50 

10593101 similar to Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (LOC640094) 1.63 

10522409 similar to ribosomal protein (LOC667154) 1.67 

10457663 ENSMUSG00000082608 1.74 

10405119 gene model 270, (NCBI) (Gm270) 1.42 

10562394 ENSMUSG00000081863 1.63 

10542270 NCBIM37:6:133259948:133262057:1 1.35 

10356170 ENSMUSG00000080399 1.81 

10448079 predicted gene, EG626573 (EG626573) 1.45 

10535900 ENSMUSG00000084436 1.65 

10568258 RIKEN cDNA 1700008J07 gene (1700008J07Rik) 1.50 

10400892 glyceraldehyde-3-phosphate dehydrogenase (LOC666213) 1.63 

10365727 ENSMUSG00000076238 1.70 

10552260 ENSMUSG00000070060 1.66 

10560474 expressed sequence C79127 (cDNA clone MGC:106176 IMAGE:4507828) 1.58 
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10442300 predicted gene, EG666030 (EG666030) 1.48 

10593167 mRNA for transcription factor S-II-related proteins 1.67 

10365335 NCBIM37:10:83364576:83486518:1 1.46 
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Table 11. Summary of conservative gene-by-gene analysis.  

Gene description/symbol Potential effect on Ts65Dn soleus 

Genes with a role in metabolism 

TBC1 domain family, member 1 (Tbc1d1) Stimulates glucose uptake 

MLX interacting protein (Mlxip) Stimulates glycolysis but suppresses glucose uptake 

adrenergic receptor, alpha 1a (Adra1a) Suppresses glucose uptake 

trans-acting transcription factor 5 (Sp5) Stimulates cytochrome c oxidase expression 

sterol regulatory element binding transcription factor 1 (Srebf1) Suppresses lipogenesis 

tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase 

(Tnks) 

Suppresses lipid metabolism 

melanin-concentrating hormone receptor 1 (Mchr1) Increased energy expenditure 

Genes with a role in neuromuscular transmission 

solute carrier family 18 (vesicular monoamine), member 3 (Slc18a3) Suppresses synaptic vesicle formation 

intersectin 1 (SH3 domain protein 1A) (Itsn1) Regulates synaptic vesicle cycling 

amyloid beta (A4) precursor protein (App) Necessary for neuromuscular junction integrity 
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syntaphilin (Snph) Regulates mitochondrial mobility in axons 

Genes with a role in inflammation 

CD276 antigen precursor (Cd276) Decreased suppression of inflammation 

tumor necrosis factor, alpha-induced protein 8-like 2 (Tnfaip8l2) Decreased suppression of inflammation 

complement component 3a receptor 1 (C3ar1) Stimulates inflammation 

Genes with a role in muscle differentiation/regeneration 

netrin 3 (Ntn3) Suppresses muscle differentiation 

RB1-inducible coiled-coil 1 (Rb1cc1) Suppresses muscle differentiation 

nephrosis 1 homolog, nephrin (human) (Nphs1) Suppresses muscle differentiation 

numb gene homolog (Drosophila) (Numb) Stimulates muscle differentiation and regeneration 

avian reticuloendotheliosis viral (v-rel) oncogene related B (Relb) Suppresses muscle differentiation 

kinase insert domain protein receptor (Kdr) Stimulates muscle regeneration 

Genes with a role in proteolysis and damage stimulus 

ring finger protein 160 (Rnf160) Stimulates proteolysis 

ariadne homolog 2 (Drosophila) (Arih2) Suppresses proteolysis 
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serine/threonine kinase 4 (Stk4) Stimulates proteolysis 

replication protein A2 (Rpa2) Stimulates DNA repair 

Rap1 interacting factor 1 homolog (yeast) (Rif1) Stimulates DNA repair 

NIMA (never in mitosis gene a)-related expressed kinase 1 (Nek1) Stimulates DNA repair 

ectonucleotide pyrophosphatase / phosphodiesterase 7 (Enpp7) Decreases oxidant production 

fos-like antigen 1 (Fosl1) Stimulates antioxidant gene expression 

transmembrane BAX inhibitor motif containing 6 (Tmbim6) Suppresses apoptosis 

Genes with a role in skeletal muscle structure and function 

tropomodulin 1 (Tmod1) Enhances muscle force production 

annexin A6 (Anxa6) Enhances calcium regulation 

secretogranin V (Scg5) Stimulates ryanodine-sensitive calcium release 

tescalcin (Tesc) Stimulates maintenance of muscle pH 

phosphoglucomutase 5 (Pgm5) Enhances structural stability of muscle plasmalemma 

moesin (Msn) Enhances cytoskeletal stability 

leprecan-like 1 (Leprel1) Depressed collagen IV production for muscle basement 
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membrane 

laminin, gamma 1 (Lamc1) Enhances sarcolemma stability 

myosin, light polypeptide 6B (Myl6b) Enhances cytoskeletal stability 

Genes with a role in iron metabolism 

transmembrane serine protease 6 (Tmprss6) Stimulates iron uptake 
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Table 12. Terms identified from DAVID analysis. CL=cluster; ES=enrichment score; FE=fold enrichment; FDR=false discovery rate. 

CL ES Category Term p-value FE FDR 

1 6.5 Biological process GO:0051603~proteolysis involved in cellular protein catabolic process 0.000 2.5 0.0 

  Biological process GO:0044257~cellular protein catabolic process 0.000 2.5 0.0 

  Biological process GO:0030163~protein catabolic process 0.000 2.4 0.0 

  Keyword ubl conjugation pathway 0.000 2.5 0.0 

  Biological process GO:0044265~cellular macromolecule catabolic process 0.000 2.3 0.0 

  Biological process GO:0043632~modification-dependent macromolecule catabolic process 0.000 2.4 0.0 

  Biological process GO:0019941~modification-dependent protein catabolic process 0.000 2.4 0.0 

  Biological process GO:0009057~macromolecule catabolic process 0.000 2.1 0.0 

  Biological process GO:0006508~proteolysis 0.000 1.6 0.6 

2 4.3 Molecular function GO:0008092~cytoskeletal protein binding 0.000 2.5 0.0 

  Cellular component GO:0015629~actin cytoskeleton 0.000 3.0 0.1 

  Molecular function GO:0003779~actin binding 0.000 2.4 0.4 

  Keyword actin-binding 0.001 2.5 0.7 
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3 4.1 Molecular function GO:0008092~cytoskeletal protein binding 0.000 2.5 0.0 

  Cellular component GO:0005856~cytoskeleton 0.000 1.6 0.2 

  Keyword cytoskeleton 0.004 1.7 4.8 

4 3.9 Molecular function GO:0017076~purine nucleotide binding 0.000 1.6 0.0 

  Molecular function GO:0032553~ribonucleotide binding 0.000 1.5 0.0 

  Molecular function GO:0032555~purine ribonucleotide binding 0.000 1.5 0.0 

  Molecular function GO:0030554~adenyl nucleotide binding 0.000 1.6 0.0 

  Molecular function GO:0001883~purine nucleoside binding 0.000 1.6 0.0 

  Keyword serine/threonine-protein kinase 0.000 2.3 0.0 

  Molecular function GO:0001882~nucleoside binding 0.000 1.6 0.0 

  Biological process GO:0016310~phosphorylation 0.000 1.9 0.1 

  Molecular function GO:0004674~protein serine/threonine kinase activity 0.000 2.2 0.1 

  Molecular function GO:0005524~ATP binding 0.000 1.6 0.1 

  Keyword nucleotide-binding 0.000 1.5 0.1 

  Molecular function GO:0032559~adenyl ribonucleotide binding 0.000 1.5 0.1 



www.manaraa.com

142 

 

  Keyword atp-binding 0.000 1.6 0.1 

  Biological process GO:0006468~protein amino acid phosphorylation 0.000 1.9 0.2 

  Interpro IPR008271:Serine/threonine protein kinase, active site 0.000 2.2 0.3 

  Biological process GO:0006793~phosphorus metabolic process 0.000 1.7 0.4 

  Biological process GO:0006796~phosphate metabolic process 0.000 1.7 0.4 

  Keyword transferase 0.000 1.5 0.4 

  Interpro IPR002290:Serine/threonine protein kinase 0.000 2.4 0.7 

  Interpro IPR017441:Protein kinase, ATP binding site 0.000 2.0 0.8 

  Interpro IPR000719:Protein kinase, core 0.001 1.9 0.9 

  Interpro IPR017442:Serine/threonine protein kinase-related 0.001 2.1 1.1 

  Molecular function GO:0004672~protein kinase activity 0.001 1.8 1.2 

5 3.6 Cellular component GO:0043232~intracellular non-membrane-bounded organelle 0.000 1.5 0.1 

  Cellular component GO:0043228~non-membrane-bounded organelle 0.000 1.5 0.1 

  Cellular component GO:0005856~cytoskeleton 0.000 1.6 0.2 

  Cellular component GO:0044430~cytoskeletal part 0.003 1.6 4.2 
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6 3.1 Biological process GO:0009314~response to radiation 0.001 2.9 1.0 

  Biological process GO:0009416~response to light stimulus 0.001 3.4 1.2 

  Biological process GO:0009628~response to abiotic stimulus 0.002 2.2 2.7 

7 3 Cellular component GO:0005654~nucleoplasm 0.000 1.9 0.2 

  Cellular component GO:0031981~nuclear lumen 0.000 1.7 0.5 

  Cellular component GO:0044451~nucleoplasm part 0.000 1.9 0.6 

  Cellular component GO:0031974~membrane-enclosed lumen 0.002 1.5 2.5 

  Cellular component GO:0070013~intracellular organelle lumen 0.004 1.5 4.8 

8 2.9 Biological process GO:0009792~embryonic development ending in birth or egg hatching 0.000 2.1 0.2 

  Biological process GO:0043009~chordate embryonic development 0.000 2.1 0.4 

9 2.9 Biological process GO:0007010~cytoskeleton organization 0.000 2.2 0.4 

  Biological process GO:0030029~actin filament-based process 0.002 2.6 2.6 

10 2.6 Interpro IPR018502:Annexin repeat 0.001 11.9 0.9 

  Interpro IPR001464:Annexin 0.001 11.9 0.9 

  Interpro IPR018252:Annexin repeat, conserved site 0.001 11.9 0.9 
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  Keyword annexin 0.001 11.7 0.9 

  Keyword phospholipid binding 0.001 11.7 0.9 

  Keyword calcium/phospholipid-binding 0.001 10.8 1.2 

  Molecular function GO:0005543~phospholipid binding 0.003 2.8 4.8 

  Keyword endonexin fold 0.004 28.0 5.0 

11 2.5 Cellular component GO:0030027~lamellipodium 0.000 4.8 0.3 

  Cellular component GO:0031252~cell leading edge 0.004 3.0 5.2 

12 2.5 Biological process GO:0033554~cellular response to stress 0.001 1.9 2.2 

  Biological process GO:0006281~DNA repair 0.002 2.3 4.2 

13 2.3 Cellular component GO:0031410~cytoplasmic vesicle 0.001 1.9 1.0 

  Cellular component GO:0031982~vesicle 0.001 1.9 1.4 

14 2.3 Biological process GO:0046907~intracellular transport 0.000 2.3 0.0 

  Biological process GO:0008104~protein localization 0.000 1.8 0.2 

  Keyword protein transport 0.000 2.1 0.2 

  Biological process GO:0015031~protein transport 0.000 1.9 0.2 
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  Biological process GO:0045184~establishment of protein localization 0.000 1.8 0.3 

  Biological process GO:0006913~nucleocytoplasmic transport 0.001 3.5 1.0 

  Biological process GO:0051169~nuclear transport 0.001 3.4 1.2 

15 2.2 Biological process GO:0051146~striated muscle cell differentiation 0.000 3.8 0.5 

  Biological process GO:0014706~striated muscle tissue development 0.001 3.1 1.0 

  Biological process GO:0055002~striated muscle cell development 0.001 4.7 1.0 

  Biological process GO:0042692~muscle cell differentiation 0.001 3.1 1.6 

  Biological process GO:0060537~muscle tissue development 0.001 2.9 1.9 

  Biological process GO:0055001~muscle cell development 0.001 4.1 2.3 

16 2.2 Biological process GO:0007010~cytoskeleton organization 0.000 2.2 0.4 

17 2.1 Molecular function GO:0008047~enzyme activator activity 0.000 2.6 0.1 

  Molecular function GO:0030695~GTPase regulator activity 0.000 2.2 0.3 

  Molecular function GO:0060589~nucleoside-triphosphatase regulator activity 0.000 2.2 0.4 

  Keyword GTPase activation 0.001 2.9 1.6 

  Molecular function GO:0005096~GTPase activator activity 0.001 2.5 1.9 
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  Molecular function GO:0005083~small GTPase regulator activity 0.002 2.3 3.6 

18 2 Cellular component GO:0046930~pore complex 0.000 4.6 0.2 

  Cellular component GO:0005635~nuclear envelope 0.001 3.0 0.7 

  Cellular component GO:0005643~nuclear pore 0.001 4.6 0.9 

19 2 Interpro IPR011989:Armadillo-like helical 0.002 2.9 3.2 

20 1.9 Biological process GO:0051146~striated muscle cell differentiation 0.000 3.8 0.5 

  Biological process GO:0055002~striated muscle cell development 0.001 4.7 1.0 

  Biological process GO:0055001~muscle cell development 0.001 4.1 2.3 

21 1.7 Molecular function GO:0017124~SH3 domain binding 0.002 3.6 2.7 

22 1.7 Biological process GO:0009152~purine ribonucleotide biosynthetic process 0.000 3.7 0.2 

  Biological process GO:0009260~ribonucleotide biosynthetic process 0.000 3.5 0.3 

  Biological process GO:0009150~purine ribonucleotide metabolic process 0.000 3.3 0.5 

  Biological process GO:0009165~nucleotide biosynthetic process 0.000 2.7 0.8 

  Biological process GO:0009259~ribonucleotide metabolic process 0.001 3.1 0.9 

  Biological process GO:0034654~nucleobase, nucleoside, nucleotide and nucleic acid 0.001 2.7 1.1 
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biosynthetic process 

  

Biological process GO:0034404~nucleobase, nucleoside and nucleotide biosynthetic 

process 0.001 2.7 1.1 

  Biological process GO:0044271~nitrogen compound biosynthetic process 0.001 2.1 2.0 

  Biological process GO:0006164~purine nucleotide biosynthetic process 0.001 2.9 2.0 

  Biological process GO:0009206~purine ribonucleoside triphosphate biosynthetic process 0.002 3.3 2.9 

  Biological process GO:0009201~ribonucleoside triphosphate biosynthetic process 0.002 3.3 2.9 

  Biological process GO:0006163~purine nucleotide metabolic process 0.002 2.6 2.9 

  Biological process GO:0009145~purine nucleoside triphosphate biosynthetic process 0.002 3.3 3.1 

  Biological process GO:0009142~nucleoside triphosphate biosynthetic process 0.002 3.3 3.4 

  Biological process GO:0006754~ATP biosynthetic process 0.002 3.4 4.2 

23 1.7 Kegg pathway mmu05223:Non-small cell lung cancer 0.000 4.9 0.5 

  Kegg pathway mmu05215:Prostate cancer 0.001 3.6 1.0 

  Kegg pathway mmu05200:Pathways in cancer 0.003 2.0 3.1 

24 1.6 Biological process GO:0030334~regulation of cell migration 0.002 3.4 2.6 
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  Biological process GO:0040012~regulation of locomotion 0.002 3.1 3.1 

25 1.6 Biological process GO:0007049~cell cycle 0.000 1.8 0.5 

26 1.5 Interpro IPR019775:WD40 repeat, conserved site 0.002 2.2 2.9 

  Keyword wd repeat 0.003 2.1 4.0 

27 1.5 Molecular function GO:0004221~ubiquitin thiolesterase activity 0.001 4.0 1.3 

28 1.4 Molecular function GO:0005543~phospholipid binding 0.003 2.8 4.8 
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Table 13. Differential expressed microRNAs in Ts65Dn soleus. 

Name 

Chromosome 

location 

Up- or down-

regulated? 

Fold change 

mmu-mir-99a 16 Down 1.9 

mmu-mir-103-2 2 Up 1.7 

mmu-mir-138-2 8 Down 1.5 

mmu-mir-199a-1 9 Down 1.9 

mmu-mir-181a-2 2 Down 1.6 

mmu-mir-326 7 Down 1.9 

mmu-mir-680-3 12 Down 2.0 

mmu-mir-693 17 Down 1.4 
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Table 14. Effected pathways by microRNA identified using mirPATH. 

KEGG pathway 

KEGG pathway 

ID 

Number of 

genes -ln(p-value) 

Wnt signaling pathway mmu04310 39 20.76 

Colorectal cancer mmu05210 26 17.78 

Acute myeloid leukemia mmu05221 20 16.8 

Long-term potentiation mmu04720 21 16.09 

Focal adhesion mmu04510 44 15.81 

mTOR signaling pathway mmu04150 18 15.23 

Axon guidance mmu04360 32 14.3 

Renal cell carcinoma mmu05211 21 13.93 

Glioma mmu05214 19 12.79 

Prostate cancer mmu05215 24 12.66 

ErbB signaling pathway mmu04012 23 11.93 

Insulin signaling pathway mmu04910 32 11.87 

Melanogenesis mmu04916 25 11.62 

Non-small cell lung cancer mmu05223 15 8.99 

Long-term depression mmu04730 19 8.55 

Chronic myeloid leukemia mmu05220 19 8.55 

Regulation of actin 

cytoskeleton 

mmu04810 

40 8.52 

Type II diabetes mellitus mmu04930 13 7.49 

Endometrial cancer mmu05213 14 7.28 
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TGF-beta signaling pathway mmu04350 20 6.91 

GnRH signaling pathway mmu04912 21 6.73 

Ubiquitin mediated proteolysis mmu04120 26 6.5 

T cell receptor signaling 

pathway 

mmu04660 

20 5.97 

Melanoma mmu05218 16 5.67 

Dorso-ventral axis formation mmu04320 8 5.46 

Pyrimidine metabolism mmu00240 1 5.38 

Pancreatic cancer mmu05212 16 5.27 

Phosphatidylinositol signaling 

system 

mmu04070 

15 4.51 

Hedgehog signaling pathway mmu04340 12 4.21 

Arachidonic acid metabolism mmu00590 1 4.17 

Small cell lung cancer mmu05222 17 4.03 

Adherens junction mmu04520 15 4.01 

MAPK signaling pathway mmu04010 40 3.97 

Basal cell carcinoma mmu05217 12 3.83 

Cell cycle mmu04110 20 3.8 

p53 signaling pathway mmu04115 13 3.4 

Complement and coagulation 

cascades 

mmu04610 

2 3.19 
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Figure 18. Model of the biphasic effect of SOD1 activity on oxidant production (cellular 

susceptibility to oxidative stress) proposed by Xing and colleagues is shown (132). The 

model proposes that increases in SOD1 activity are protective when the dismutation of 

superoxide radical predominates, but destructive when the production of hydrogen 

peroxide predominates. SOD1-tg
+/-

 are hemizygous for human SOD1. SOD1-tg
+/+

 are 

homozygous for human SOD1. We propose that WT muscles from our study (dashed 

blue line) are comparable to WT in the proposed model. Ts65Dn muscle (dashed red line) 

is comparable to SOD-tg
+/-

.  
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on Adult Cerebral Palsy” P.I. Dr. Deborah Thorpe, July 2008.  
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 Research Project: “Muscle Strength, Physical Work Capacity and Functional 

Performance in Individuals with Down Syndrome” Co-P.I. Drs. Bo Fernhall, 2005-

2007. 
 

COMPETENCIES 
 

Laboratory Bench Skills:  
 

 Handling and care of rodents (injections, harvesting tissue, and euthanasia) 

 In vitro assessment of skeletal muscle contractility 

 Isolation and culture of single adult myofibers from rodent muscle 

 Reactive oxygen and nitrogen species detection assays 

 2’,7’-dichlorodihydrofluorescein and Amplex Red assays 

 Tissue homogenization, protein quantification, and Western blot 

 RNA isolation, cDNA synthesis, and RT-PCR 

 Embedding, cryo-sectioning, and processing of tissue sections and/or single  myofibers 

 Hematoxylin and eosin, Periodic Acid-Schiff, iron staining 

 TUNEL, CuZnSOD, and myosin heavy chain immunofluorescence 

 Separation of myosin heavy chain isoforms by electrophoresis 

 Microarray data analysis 

 Gene set analysis using MultiExperiment Viewer 

 Pathway analysis using Database for Annotation, Visualization and Integrated 

Discovery (DAVID), Ingenuity Pathway Analysis (IPA), Gene Set Enrichment 

Analysis (GSEA), and miRNA target and pathway analysis 

 Cell culture training 

 Sterile techniques 

 Proliferating, sub-culturing, harvesting, and cryo-preservation of C2C12 cell 

line 
 

Laboratory Clinical Skills: 
 

 Isometric and isokinetic strength testing 

 Electrophysiological measurements 

 Electromyography recordings, Hoffman reflex, nerve conduction, and 

compound muscle fiber action potential 

 Evoked force measurements from the triceps surae and quadriceps 

 Twitch force and interpolated twitch technique  

 Resistance training interventions 

 Assessment of physical function (chair rise, stair climbing, gait speed) 

 Peak aerobic capacity (VO2) testing 

 MRI data analysis 
 

Special skills: 
 

 Extensive formal training in biostatistics (24 credit hours of graduate coursework) 

 Participant recruitment of special populations 
 

PUBLICATIONS 
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Peer-Reviewed: 
 

1. Cowley PM, Ploutz-Snyder LL, Baynard T, Heffernan K, Jae SY, Hsu S, Lee M, Pitetti 

K, Reiman M, Fernhall B. The effect of progressive resistance training on leg strength, 

aerobic capacity and functional tasks of daily living in persons with Down syndrome. 

Disability and Rehabilitation. In press. 
 

2. Behm DG, Drinkwater EJ, Willardson JM, Cowley PM. The role of instability 

rehabilitative resistance training for the core musculature. Invited review article for 

“Special topics” issue on ”Sports Medicine”. Strength and Conditioning Journal, 33: 

72-81, 2011. 
 

3. Behm DG, Drinkwater EJ, Willardson JM, Cowley PM. Canadian Society for Exercise 

Physiology position stand: The use of instability to train the core in athletic and non-

athletic conditioning. Applied Physiology, Nutrition and Metabolism, 35: 109-112, 

2010. 2010. 
 

4. Behm DG, Drinkwater EJ, Willardson JM, Cowley PM.  The use of instability to train 

the core musculature. Applied Physiology, Nutrition and Metabolism, 35: 91-108, 2010. 
 

5. Cowley PM, Ploutz-Snyder LL, Baynard T, Heffernan K, Jae SY, Hsu S, Lee M, Pitetti 

K, Reiman M, Fernhall B.  Physical fitness predicts functional tasks in individuals with 

Down syndrome. Medicine and Science in Sports and Exercise, 42: 388-393, 2010. 
 

6. Cowley PM, Fitzgerald S, Sottung K, Swensen T.  Age, weight, and the front 

abdominal power test as predictors of isokinetic trunk strength and work in young men 

and women. Journal of Strength and Conditioning Research, 23: 915-925, 2009. 
 

7. Cowley PM, Clark BC, Ploutz-Snyder LL. Kinesthetic motor imagery and spinal 

excitability excitability: The effect of contraction intensity and spatial localization. 

Clinical Neurophysiology, 119: 1849-1856, 2008. 
 

8. Cowley PM, Swensen T. Development and reliability of two core stability field tests. 

Journal of Strength and Conditioning Research, 22: 619-624, 2008. 
 

9. Cowley PM, Swensen T, Sforzo GA. Efficacy of instability resistance training.  

International Journal of Sports Medicine 10: 829-835, 2007. 
 

Published Abstracts: 
 

1. Cowley PM, DeRuisseau KC. Soleus muscle of Down syndrome (DS) mice exhibits 

elevated markers of oxidative and nitrosative stress. FASEB J, 24: 989.4, 2010. 
 

2. Cowley PM, DeRuisseau KC. Soleus muscle from Down syndrome (Ds) mice does not 

exhibit impaired contractile function or resistant to fatigue. FASEB J, 23: 601.12, 2009. 
 

3. DiStasio, TJ, DeRuisseau LR, Cowley PM, Recca DM, DeRuisseau KC. Impact of 

caffeine administration on skeletal muscle oxidative stress and antioxidant status. 

FASEB J, 23: 601.11, 2009. 
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4. Cowley PM, Baynard T, Ploutz-Snyder L, Jae SY, Heffernan K, Hsu S, Fernhall B, 

Reiman M, Chapman S, Pitetti K. Knee extensor strength and aerobic capacity predict 

functional ambulatory ability in individuals with Down syndrome. Medicine and 

Science in Sports and Exercise, 40: S540, 2008. 
 

5. Fernhall B, Jae SY, Heffernan K, Hsu S, Ploutz-Snyder L, Cowley P, Baynard T, 

Reiman M, Chapman S, Pitetti K. Aerobic capacity is related to muscle strength in 

individuals with Down syndrome. Medicine and Science in Sports and Exercise, 39: 

S245, 2007. 
 

6. Clark B, Cowley P, Conatser R, Ploutz-Snyder L. Role of biarticular muscles in 

regulating task failure and muscle synergies. Medicine and Science in Sports and 

Exercise, 39: S268, 2007. 
 

7. Cowley P, Baynard T, Fernhall B, Ploutz-Snyder L. The effect of resistance training in 

individuals with Down syndrome. Medicine and Science in Sports and Exercise, 39: 

S98-99, 2007. 
 

8. Cowley P, Clark B, Ploutz-Snyder L. Kinesthetic motor imagery acutely increases 

spinal excitability. Medicine and Science in Sports and Exercise 38: S446, 2006. 
 

9. Swensen T, Cowley P, Sforzo G. The effects of resistance training with a stability ball. 

Medicine and Science in Sports and Exercise 37: S186, 2005. 
 

PRESENTATIONS 
 

National: 
 

1. Soleus muscle from Down syndrome (Ds) mice does not exhibit impaired contractile 

function or resistant to fatigue. Poster presentation at Experimental Biology, New 

Orleans, LA. April 2009. 
 

2. Knee extensor strength and aerobic capacity predict functional ambulatory ability in 

individuals with Down syndrome. Poster presentation at American College of Sports 

Medicine Annual Meeting, Indianapolis, IN. June 2008. 
 

3. The effect of resistance training in individuals with Down syndrome. Oral presentation 

at American College of Sports Medicine Annual Meeting, New Orleans, LA. June 2007. 
 

4. Kinesthetic motor imagery acutely increases spinal excitability. Poster presentation at 

American College of Sports Medicine Annual Meeting, Denver, CO. June 2006. 
 

Local: 
 

1. Measurement of Oxidant Production in Single Skeletal Muscle Fibers from Down 

Syndrome (DS) Mice. Oral presentation at the Mid-Atlantic American College of Sports 

Medicine Annual Meeting, Harrisburg, PA. November 2011. 
 

2. Production of Reactive Oxygen Species and Morphology of Single Skeletal Muscle 

Fibers from Down Syndrome Mice. Poster presentation at Muscle and Metabolism 
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Symposium, Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, 

PA. October 2011. 
    
3. Modeling Down syndrome in mice. Oral presentation at the Department of Exercise 

Science Seminar Series, Syracuse University, Syracuse, NY. April 2008. 
 

4. Muscle strength, functional performance, and physical work capacity in individuals 

with Down syndrome.  Oral presentation at Department of Exercise Science Seminar 

Series, Syracuse University, Syracuse, NY. March 2006. 
 

5. The effect of resistance training in individuals with Down syndrome. Oral presentation 

at Mid-Atlantic American College of Sports Medicine Annual Meeting, Harrisburg, PA. 

November 2006. 
 

6. The effect of short-term instability resistance training on muscular strength, endurance, 

and core strength. Oral presentation at Mid-Atlantic American College of Sports 

Medicine Annual Meeting, Bushkill, PA. October 2004. 
 

7. Substrate preference and rate of attachment of the limpet, lottia limatula. Oral 

presentation at Ithaca College Junior Research Symposium, Ithaca, NY. May 2001. 
 

GRANTS FUNDED 
 

1. Neuromuscular Characteristics of Individuals with Down Syndrome, Funded by 

Syracuse University SOE Creative Research Grant, PI: Patrick M. Cowley, $610, 2006. 
 

TEACHING 
 

Syracuse University, Syracuse, NY 

Graduate: 
 

PPE 795: Skeletal Muscle Physiology, Laboratory in Spring 2007 and 2009-11  

PPE 515: Graded Exercise Testing and Interpretation, Laboratory in Spring 2006  
 

Undergraduate: 
 

PPE 483: Scientific Principles of Conditioning, Lecture in Spring 2009  

PPE 408: Analysis of Human Motion, Lecture and Laboratory in Fall 2008  

PPE 497: Exercise Physiology, Laboratory in Fall 2007 and 2009  

HEA 332: Personal Health and Safety, Lecture (co-taught) in Fall 2006 and Spring 2007 
 

State University of New York Institute of Technology, Utica, NY 

Undergraduate: 
 

BIO 215: Anatomy and Physiology I, Laboratory in Fall 2008  
 

SERVICE 
 

Manuscript Reviewer (Invited): 
 

 Medicine and Science in Sports and Exercise 

 Disability and Rehabilitation 



www.manaraa.com

184 

 

 Journal of Clinical Neurophysiology 

 Intellectual & Developmental Disabilities 

 Therapeutics and Clinical Risk Management 

 Journal of Clinical Medicine and Research 
 

Professional Organizations  
 

 The American Physiological Society, 2006-Present 

 American College of Sports Medicine, 2006-Present 

 Beta Beta Beta, National Biological Honor Society, Honorary, 2001-Present 
 

HONORS AND AWARDS 
 

 Finalist for the MARC-ACSM Doctoral Student Investigator Award, Mid-Atlantic 

American College of Sports Medicine Annual Meeting, 2011. 

 American Physiological Society Carolyn tum Suden/Francis A. Hellebrandt 

Professional Opportunity Award, Experimental Biology, 2009. 

 Named ‘Teaching Associate’ in the Syracuse University Future Professoriate Program, 

2006-2007. 
 

RELATED PROFESSIONAL EXPERIENCE 
 

Manager of Musculoskeletal Laboratory           2006-2008 

Syracuse University, Syracuse, NY 

 Provided technical support to students working in the laboratory. 
 

Assistant Team Leader             2004–2005 

JM Murray Center Inc., Cortland, NY 

 Provided day-habilitation services to persons with developmental disability. 
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